代做COMP5318/COMP4318 Machine Learning and Data Mining Semester 1, 2025调试R语言程序

Computer Science

ΕXΑΜΙNΑΤΙΟN

Semester 1 - Final, 2025

COMP4318/COMP5318 Machine Learning and Data Mining

Sample exam questions

Question 1. (Multiple choice question)

Select the correct answer.

1. Leave-one-out cross validation is suitable for large data sets.

a) True

b) False

2. The regression line minimizes the sum of the residuals

a) True

b) False

3. A single perceptron can solve the XOR problem.

True    False

Question 2. (Short answer question)

1. Why do we need to apply normalization when using distance-based algorithms such as k-Nearest Neighbor?

2. In linear support vector machines, we use dot products both during training and during classification of a new example. What vectors are these products of?

During training:

During classification of new example:

3. List one disadvantage of applying a multi-layer perceptron neural network to perform. handwritten digits image classification.

4. When we use k-Nearest Neighbor for regression tasks (the class value is numeric), how is the prediction for new examples calculated?

Calculation (problem solving) questions

Question 3. Decision tree

Given is the following training data where location, weather and expensive are the features and holiday is the class.


a)  What is the entropy of this set of training examples with respect to the class?

b)  We would like to build a decision tree using information gain. Which attribute will be selected as a root of the tree? Show your calculations.

You may use this table:


Question 4. Naïve Bayes

Given is the following training data where location, weather, companion and expensive are the features and holiday is the class.


Use Naïve Bayes to predict the value of holiday for the following new example, showing your calculations: location=boring, weather=sunny, companion=annoying, expensive=Y.

Question 5. 1R

Given the training data in the table below where credit history, debt, deposit and income are attributes and risk is the class, predict the class of the following new example using the 1R algorithm: credit history=unknown, debt=low, deposit=none, income=average. If needed, settle ties by random selection. Show your calculations.


Question 6. Perceptron

Given is the following training set:

input                output

ex. 1:   1 0 0                  1

ex. 2:   0 1 1                 0

ex. 3:   1 1 0                  1

ex. 4:    1 1 1                 0

ex. 5:   0 0 1                  0

a) Train a perceptron with a bias on this training set. Assume that all initial weights (including the bias of the neuron) are 0. Show the set of weights (including the bias) at the end of the first epoch. Apply the examples in the given order.

Recall that the perceptron uses a step function defined as:

step(n) = 1, if n >= 0

= 0, otherwise.

Question 7. K-means clustering

Suppose that we are given 7 examples to cluster: A, B, C, D, E, F and G. The distance between them is given by the following matrix:


Run the k-means algorithm to group these examples into 2 clusters for 1 epoch. The initial centroids are A and B. Show the resulting clusters.

Question 8. Markov models

Given is the following Markov model for the weather in Sydney:

a) Given that today the weather is Sunny, what is the probability that it will be Sunny tomorrow and Rainy the day after tomorrow, i.e. what is the probability P(π3   = Rainy, π2 = Sunny| π1 = Sunny)?

Hint: P(A,B|C) = P(A|B,C) P (B|C)

b) If the weather yesterday was Rainy, and today is Foggy, what is the probability that tomorrow it will be Sunny?

For both questions, briefly show your calculations.

Question 9. Hidden Markov models

Julia tested positive to COVID and had to quarantine at home for several days. Her friend Nicole came to bring her food every day. We don’t know what the weather was on the quarantine days but we know the type of clothing Nicole wore and it provides evidence about the weather.

The following Hidden Markov Model models the situation. The initial state probabilities are: A0(Sunny)=0.5 and A0(Cloudy)=0.5.

Suppose that on the first quarantine day Nicole wore a dress and on the second she wore a blazer.

a)  What is the probability of the observation sequence?

b)  What is the most likely sequence of hidden states?

Briefly show your calculations.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图