代做Microeconometrics Problem Set 2代做回归

Problem Set 2

This problem set covers panel data models - including Fixed Effects and Random Effects, maximum likelihood estimation, and interpreting output from nonlinear estimation.

1. You are interested in studying the responsiveness of labor supply to wages. The original data is from Jim Ziliak (1997) ”Efficient Estimation With Panel Data when Instruments are Predetermined: An Empirical Comparison of Moment-Condition Estimators” Journal of Business and Economic Statistics, 15, 419-431 MOM.dat was downloaded from the JBES website and is available to you on Blackboard. MOM.dat has data on 532 men from 1979 to 1988. Data are space-delimited ordered by person with a separate line for each year. The panel is balanced so there will be 5320 observations in total. id is a unique identifier assigned to each man in the sample (1-532). The observations are ordered: id 1 1979, id 1 1980, ..., id 1 1988, id 2 1979, id 2 1980, ... There are 8 variables: lnhr lnwg kids ageh agesq disab id year

yit = ci + xi β + uit

yit = lnhrit =man i’s ln(hours worked) at time t

ci =person-specific unobserved desire to work that is time-invariant

x1it = lnwgit =man i’s ln(wage) at time t,

x2it = kidsit =man i’s number of kids at time t, x3it = agehit =man i’s age at time t,

x4it = agesqit=man i’s age squared at time t,

x5it = disabit =indicator equal to 1 if man i is disabled at time t.

(a) Interpret β1.

(b) Estimate βˆ by pooled ordinary least squares. Report default standard errors and heteroskedasticity-robust standard errors (clustering across time for a given individual).

(c) Interpret βˆ1,OLS .

(d) Re-estimate βˆ by pooled ordinary least squares, including year dummies. Test the null hypothesis that the year effects on men’s hours worked are jointly zero, at the 5% significance level. How has βˆ1,OLS changed?

(e) Under what conditions are βˆ1,OLS consistent estimators for β1? Do you think those conditions hold?

(f) Estimate βˆ using the within estimator (fixed effects model). Report default standard errors and panel-robust standard errors.

(g) Under what conditions are conditions hold? βˆ1,F E consistent estimators for β1? Do you think those

(h) Estimate βˆ using Feasible Generalized Least Squares (random effects model).

(i) Under what conditions are conditions hold? βˆ1,RE consistent estimators for β1? Do you think those

(j) Are the estimated coefficients on lnwg, βˆ1, similar across models?

(k) Is there a systematic difference between the default standard errors (assuming ho- moskedasticity and no serial correlation) and the panel-robust standard errors?

(l) Perform. the Hausman test of the difference between the fixed and random effects estimate of β. What do you conclude at the 5% significance level.

(m) Given your arguments about which estimators are likely consistent and your estimates of β1 given this sample, what would you surmise about whether the labor supply curve is upward sloping?

2. Let grad be an indicator variable for whether a student-athlete graduates from a large uni- versity within 5 years of starting. Using data from 420 student-athletes, the following logit estimates were obtained:

ˆ P [grad = 1|hsGPA, SAT, Study] = G(1.17+.24hsGPA+.00058SAT +.073Study); G(z) = 1 + eZ/eZ

(a) Holding hsGPA fixed at 3 and SAT fixed at 1200, compute the estimated difference in the graduation probability for someone who spent 10 hours per week in study hall (Study=10) and someone who spent 5 hours per week (Study=5).

(b) Compute the marginal effect of an extra hour of study for someone who hsGPA=3, SAT=1200, and Study=10.

3. Read in the Charity data set (on the blackboard site). The data set has 4,268 observations on people who have responded to past requests by donating at least once. Where the variables are

y1i = respondi =indicator if person i responded with a donation(gift) in the most recent request

y2i = gifti =amount of i’s gift in response to the most recent request, x1i = resplasti =indicator if person i responded to the most recent mailing, x2i = weekslasti =number of weeks since i’s last response,

x3i = proprespi =i’s response rate to mailings,

x4i = mailsyeari=number of mailings i receives per year,

x5i = giftlasti =amount of i’s most recent gift,

x6i = avggifti =mean amount of i’s past gifts.

You are interested in the effect of the number of mailings per year on the response probability for donating, so that you can asses the cost and benefit of increasing mailings. You (partially) specify the model

P [y1 = 1|X] = G(β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6) + c

(a) Report the ordinary least squares estimates of the Linear Probability Model using heteroskedasticty-robust standard errors.

(b) Interpret the coefficient estimate on mailsyear, βˆ4.

(c) Report the Probit estimates of β along with the log likelihood.

(d) Write down the implied G(·) for the Probit model.

(e) Which, if any, of the Probit coefficient estimates are statistically significant?

(f) Calculate the Marginal effect of mailings per year in two ways: averaged over the sample and evaluated at the sample average.

(g) Report the Logit estimates of β along with the log likelihood.

(h) Calculate the Marginal effect of mailings per year in two ways: averaged over the sample and evaluated at the sample average.

(i) Compare the three binary response models on the basis of statistical significance of βˆ4.

(j) Compare the three binary response models on the basis of estimated Marginal Effects.

(k) Compare the logit and probit binary response models on the basis of log-likelihood.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图