代写COMPSCI5100 Machine Learning & Artificial Intelligence for Data Scientists 20-21代写Web开发

DEGREES OF MSc, MSci, MEng, BEng, BSc,MA and MA (Social Sciences)

COMPSCI5100

Machine Learning & Artificial Intelligence for Data Scientists

1. Considering linear regression on the Olympic data in figure 1.

Figure 1: Olympic data

(a) We want to predict Olympic years from 100m winning times. What should be the target value and attribute? When solving this regression task with a polynomial regression model, how would you rescale the attributes? Why?          [6 marks]

(b) Based on what you have learned from fitting linear regression models (with

polynomial or RBF) to the relationship between years and winning times, predict which year may produce winning time 9s and 13s , explain why.           [4 marks]

(c) The radial basis function (RBF):

is a popular basis function . The parameter μd,k  is often be a data point xi,d, i  =   1, … , N. Outline the strength and risk of this setup for μd,k , and how would you mitigate the risk.        [5 marks]

(d) In addition to the polynomial function and RBF, linear regression can be generalized using other basis functions . One of most widely used example is the Fourier analysis, let’s consider the following linear regression model:

What is the basis function of choice here? How would you deal with the unknow parameters Aj  and θj? (Hint: you might find the following trigonometry identity  useful, cos(a + b) = cos(a)cos(b) + sin(a)sin(b)) .      [5 marks]

2. Classification question

(a) The likelihood of logistic regression

where  Use an example of a few data points to explain how the

likelihood function tells how well the parameter W fits the data .        [4 marks]

(b) The following matrix contains estimated parameters values from three types of

logistic regression models. The model type is indicated by the columns . The parameter of each feature is placed in the corresponding row. Give your best estimate of what each model is and explain why.

[6 marks]

(c) Compare the effect on prediction of the three logistic models in (b) .             [4 marks]

(d) Let’s consider a binary classifier trained on a falsely labeled dataset. The issue is all

(i) What would be the AUC (computed with the correct labels) when the classifier is perfectly trained on the false data? And why?    [2 marks]

(ii) Provide the range of possible values for the missing output (labeled ‘?’) that would be produced by the classifier in (i) . Explain why.         [2 marks]

(iii) What would be the AUC (computed with the correct labels) of a random classifier trained on the falsely labeled data? Why?          [2 marks]

3. Clustering question (Figures in this question were taken from the sklearn clustering tutorial:

https://scikit-learn.org/stable/modules/clustering.html)

(a) Describe clustering results of K-means and Gaussian Mixture in figure 2. Hint: answer should address parameters estimation, initial conditions and selecting the number of clusters .

(b) Suppose we want to avoid any data point from the inner ring being assigned to the same cluster with any point data point from the outer ring. Outline two approaches to achieve this goal with the Gaussian mixture model? Hint: You don’t have to use just 2 clusters .                [4 marks]

(c) Describe clustering results of K-means and Gaussian Mixture in figure 3. Hint: answer should address parameters estimation, initial conditions and selecting the number of clusters .

Figure 3: Clustering results of (A) K-means and (B) Gaussian mixture model.

[6 marks]

(d) Suppose Figure 3 (B) represents the results we want. Outline one approach to achieve this goal with K-means . Hint: Sufficient details of the approach are required to get full marks.            [4 marks]



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图