代做MGSC 661: Individual Assignment #3代做Python编程

MGSC 661: Individual Assignment #3

General Information

This assignment must be submitted via the submission folder for Assignment #3 via myCourses before its due date. This is an individual assignment and more instructions on this assignment and due date can be found in the module Assessment Overview for Assignment #3.

In this assignment, you will be also assessed based on the effectiveness of your visualizations.

This assignment is worth 100 points (30% of your marks). All the questions are listed below. You can find the complete grading rubric breakdown in this assignment submission folder.

Assignment Goal

The aim of this assignment is to build unsupervised learning models.

On the first problem, you will use K-means clustering for image compression. You will reduce the number of colours in an image by clustering similar colours and replacing them with the centroid of the cluster. This will help you understand how K-means clustering can be applied to image data for compression purposes.

On the second problem, you will use a dataset on the performance characteristics of various automobiles to perform principal component analysis to make cross-country of manufacturing comparisons.

For all questions in this assignment, you must attach your Python code with your submission along with your outputs. Jupyter notebook code files are accepted as well.

Read the following tasks that you should perform to complete this assignment. This assignment contains 2 parts as follows:

Part 1: Image Compression using K-Means (50 points)

a. (5 points) Downloading of Image from Internet using Python Library: Pick any colour  image of your choice. You can use an image from your personal collection or download a sample image from the internet. If the run-time of your algorithm is too slow, you may need to choose a lower-resolution image. Use an appropriate Python library to load the  image. Alternatively, you can use the flower.jpg from sklearn.datasets.

from sklearn.datasets import load_sample_image

flower = load_sample_image(“flower.jpg”)

requirement: Image is loaded correctly using an appropriate Python lib, with clear and accurate descriptions.

b. (5 points) Image Conversion: Convert the image to a two-dimensional array where each row represents a pixel and each column represents a colour channel (RGB values).

requirement: Image is converted correctly to a two-dimensional array with clear and accurate descriptions.

c.  (10 points) K-Means Implementation: Implement k-means clustering to cluster the pixel colors into k clusters (experiment with different values of k such as 16, 32, 64,  etc.).

requirement: K-means clustering is implemented correctly with clear and accurate descriptions, experimenting with different values of k.

d. (5 points) Colour Replacement: Replace each pixel's colour with the centroid of the cluster it belongs to.

requirement: Pixel colors are replaced correctly with the centroid of the cluster with clear and accurate descriptions.

e.  (10 points) Reconstructing, Comparing & Defining: Reconstruct the compressed

image from the clustered pixel data. Compare the original image and the compressed image by visualizing them side by side. Define a metric to quantify the compression achieved, if at all, for the image.

requirement: Compressed image is reconstructed correctly and compared with the original using appropriate visualizations, with clear and accurate descriptions of the compression metric. Metric to quantify loss of quality is defined correctly with clear and accurate descriptions, discussing trade-offs between clusters and image quality/ compression.

f.  (15 points) Metric Definition and Trade-off Discussion: Define a metric to quantify

the loss of quality, if at all, between the original image and the compressed image.

Discuss the trade-off between the number of clusters and the quality of the image and the compression achieved.

requirement: Metric is defined correctly with clear and accurate descriptions, effectively quantifying the loss of quality. Comprehensive discussion with clear and accurate descriptions, effectively addressing the trade-off between clusters, image quality, and compression.

Part 2: Principal Component Analysis (50 points)

The mtcars dataset is a classic dataset in statistics and machine learning, extracted from the 1974 Motor Trend US magazine and comprises various specifications of 32 different car models.

•    model: Car make

•    mpg: Miles per gallon (fuel efficiency)

•   cyl: Number of cylinders in the engine

•   disp: Displacement (cubic inches)

•    hp: Gross horsepower

•    drat: Rear axle ratio

•   wt: Weight (1000 lbs)

   qsec: 1/4 mile time (seconds)

•   vs: Engine (0 = V-shaped, 1 = straight)

•   am: Transmission (0 = automatic, 1 = manual)

•   gear: Number of forward gears

•   carb: Number of carburetors

In this problem, you have also been provided with an additional feature: country denoting the origin of the vehicle.

a.   (5 points) Loading of the Dataset: Load the dataset and confirm it has loaded correctly.

requirement: Dataset is loaded correctly with clear and accurate descriptions.

b.   (5 points) Standardization: Standardize all numerical features in the dataset to

have a mean of 0 and a standard deviation of 1. This is an essential preprocessing step in many machine learning algorithms and statistical techniques.

requirement: Numerical features are standardized correctly with clear and accurate descriptions.

c.   (15 points) PCA Application: Apply PCA to the standardized numerical features to reduce it to the first two principal components. Also, explain the percentage of variance explained by each principal component.

requirement: PCA is applied correctly with clear and accurate descriptions of variance explained by each principal component.

d.   (5 points) Scatter Plot Creation: Create a scatter plot of the data points in the new 2-dimensional space defined by the principal components.

requirement: Scatter plot is created correctly with clear and accurate descriptions.

e.   (10 points) Colour-Coding by Number of Cylinders: Colour-code the observations by the number of cylinders (cyl). Discuss the separation of the different cylinder categories in the PCA plot. Which cylinder categories are most clearly separated? requirement: Observations are color-coded correctly with clear and accurate descriptions, discussing separation of cylinder categories.

f.    (10 points) Colour-Coding by Country: Next, colour-code the observations by the country of the models. Discuss and interpret the separation of the cars from different countries in the PCA plot.

requirement: Observations are color-coded correctly with clear and accurate descriptions, discussing separation of cars from different countries





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图