代写COMPSCI5100 Machine Learning & Artificial Intelligence for Data Scientists 21-22代做Java语言

COMPSCI5100

Machine Learning & Artificial Intelligence for Data Scientists

1. Consider using regression to predict global temperature anomaly from cumulative CO2 emissions data showing in the following figure:

Figure 1. Global Temperature anomaly vs Cumulative CO2 emissions Data. Source: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions

(a) Propose a rescaling strategy (with enough details of the procedure) for the cumulative CO2 emissions when using high order polynomial regression. Explain why the proposed strategy is appropriate.          [4 marks]

(b) Suppose a polynomial regression model with order of 1 is fitted to the data (without rescaling cumulative CO2 emissions). Identify a subset of data in figure 1 which will mostly likely be poorly fitted and explain why.   [6 marks]

(c) Consider fitting the data in figure 1 with a regression with the radial basis function (RBF):

where xn represents each cumulative CO2 emission. Outline one advantage and one disadvantage of using RBF over polynomials for the data in figure 1.            [4 marks]

(d) Suppose we use the RBF in (c) with μk  set to be the same as xn, a commonly used

approach in RBF, s2 = 1e24, to fit the CO2/Temperature Anomaly data. We used three fitting strategies, namely linear regression, ridge regression and lasso, and obtained the following fitting model in Figure 2 A, B and C. Identify which fitting strategy is used in each figure and explain why (note, each method is used only once).    [6 marks]

2. Classification question

(a) The likelihood of logistic regression is the following:

where  Consider the fitting this model to a dataset with 2 classes, 2

binary features and 2 examples per class:

Class 0: Example 1 = [1,1], Example 2 = [1,0].

Class 1: Example 1 = [1,1], Example 2 = [0,1].

Use the likelihood function to demonstrate which of the following two parameters hypotheses: [0.6, 0.1] and [0.6, 0.8] fits this dataset better.     [6 marks]

(b) Consider a support vector machine (SVM) is trained on a dataset where two data points are mislabeled by a non-expert annotator. The classifier outputs in the table below:

(i)        What would be the AUC (computed with the correct labels) if the

missing value is 0.6? (Detailed calculation required)         [2 marks]

(ii)       What would be the maximum achievable AUC (computed with the  corrupted labels) and corresponding range of possible values for the missing value? Explain why.   [2 marks]

(iii)      If you could correct one of the two corrupted labels to get better

AUC (computed with the labels with one remaining wrongly labeled data), assuming the missing value is 0.6 and rest ofthe scores do not change. Which will you correct? Explain why.    [2 marks]

(c) Noisy labels may produce outliers in the training set. How will you configure the

SVM in terms of margin and kernel to deal with outliers? Explain why?   [4 marks]

(d) Calculating AUC requires a classifier to give a score for each data point. A K-nearest neighbor classifier does not normally provide a score, but directly predicts the class for a data point. Outline two approaches to produce scores for computing AUC for a  K-nearest neighbor classifier.         [4 marks]

3. Unsupervised learning question (Total marks 20)

Consider using the K-means algorithm to perform. clustering on the following scenario in figure 3 A. We expect to form. three clusters as shown in figure 3B.

(a) Outline what would happen if we directly apply K-means with Euclidean distance to this data. Can it achieve the clustering objective? How will it split/group the data and why?     [2 marks]

(b) An alternative approach is to use Kernel K-means. Would kernel K-means help in this dataset and why?   [3 marks]

(c) An alternative approach is to use mixture models. Would mixture models help to better classify the dataset in figure 3 A than K-means and why?    [3 marks]

We want to cluster data in figure 4 A in three clusters as shown in figure 4 B.

(d) Outline what would happen if we directly apply K-means with Euclidean distance to

this data. Can it achieve the clustering objective? How will it split/group the data?           [2 marks]

(e) An alternative approach is to use Kernel K-means. Would kernel K-means help in this dataset and why?     [3 marks]

(f)An alternative approach is to use mixture models. Explain whether mixture models could help to better classify this dataset and why?           [3 marks]

(g) Explain why there is a need for feature selection and list two methods and their main characteristics           [4 marks]


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图