代做Microeconometrics Problem Set 1代做Prolog

Problem Set 1

This problem set covers ordinary least squares, heteroskedasticity, and instrumental variables. You will need to read in the following ascii data (.raw or .asc) from the Data Sets for problem sets module in Canvas: gpa2, qreg0902, MROZ.

1. You are interested in studying the extent to which factors observable at the point of applica- tion affect college academic performance. Assume E(y|X) =  where

yi =student i’s college GPA

x1i=student i’s size of high school graduating class (in hundreds of students)

x2i=student i’s academic percentile in high school class,

x3i=student i’s SAT score

x4i=indicator equal to 1 if student i is female

x5i=indicator equal to 1 if student i is an athlete

(a) Interpret β1.

(b) Interpret β5.

(c) Using the data set gpa2 (on the Canvas site), estimate βˆ by ordinary least squares.

(d) Interpret βˆ1.

(e) Interpret βˆ5.

(f) Test the null that the mean college academic performance of athletes is equivalent to that of non-athletes, conditional on other factors, at the 5% significance level.

(g) Drop the SAT variable from the model specification and retest the null of equivalence. What does this suggest, if anything?

(h) Do you think that it is likely that the variance of GPA conditional on X is homoskedastic? If not, how would you suggest adjusting your estimators?

2. Read in the qreg0902 data set (on the Canvas site in the Dataset Module). Where the variables are sex (1:M,2:F) age educyr98 farm (1 if farm, 0 otherwise) urban98 (1 if urban, 0 otherwise) hhsize (household size) lhhexp1 (ln(total expenditure) lhhex12m(ln(medical expenditures if positive, . otherwise)) lnrlfood.

(a) Generate level variables for expenditure: total=exp(lhhexp1) and med=exp(lhhex12m). Perform. ordinary least squares regression of medical expenditure on a constant and total expenditure. You should obtain a slope estimate of 0.0938.

(b) In theory, would you expect the errors in this regression to be homoskedastic or het- eroskedastic? Explain.

(c) Perform a statistical test of the null of homoskedasticity (e.g. Breusch Pagan test).

(d) Plot the o.l.s. squared residuals against total expenditures to examine visually for the presence of heteroskedasticity.

(e) Estimate the heteroskedasticity-robust standard errors of βˆols.

(f) Perform. Weighted Least Squares regression of med on a constant and total under the assumption that the error has variance σ2 = σ2total2.

(g) Compare the default o.l.s. standard errors with the heteroskedasticity-robust standard errors and the w.l.s. standard errors.

3. Kleck and Patterson (1993) studied the effect of gun controls laws on city-level violent crime rate. They have data on gun control laws, unemployment rate, population, percent of the population that reports as black, number of people aged 18 to 21 years old, etc. and they start with the model

violent β0 + β1guncontrol β2unemp β3pop β4percblack β5age18to21 + . . . u

(a) Explain whether or not you think it is justified to assume that Cov(guncontrol, u) = 0, that is, what the text would refer to as guncontrol is an ”exogenous” variable?

(b) Researchers have used variables such as z1 = number of National Rifle Association members in the city, z2 = number of subscribers to gun magazines and z3 = state hunting license rate as instrumental variables for guncontrol. Referring to the two necessary conditions, do you believe any of these to be valid instruments? Explain.

4. Read in the MROZ data set (again available for download in Canvas). The MROZ.des file does not include data, rather it describes the variables in the data set.Restrict the data set to only working women (lwage not missing).

(a) Perform. the ordinary least squares regression of ln(wage) on a constant, experience, experience squared, and education.

(b) Interpret the o.l.s. coefficient estimate on education.

(c) What theoretical reason(s) might education be correlated with the disturbance? How would the correlation impact the properties of βˆols?

(d) Compute the heteroskedasticity robust standard errors. Are they much different than the o.l.s. standard errors?

(e) Under which conditions would mother’s education, father’s education, and husband’s ed- ucation be valid instruments for the woman’s education? Do you think those conditions hold?

(f) Re-estimate the βs using Two Stage Least Squares with those 3 instruments. How do

βˆols and βˆ2sls compare?

(g) Test for the ”endogeneity” of education.

(h) Use the first stage regression results to test if your instruments are partially correlated with what they are instrumenting for.

(i) Using the Sargen test, do you accept or reject the null of valid instruments?


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图