代写SOLA 5053: Assignment 1 2025 The Wind Resource代写Python语言

SOLA 5053: Assignment 1 2025

The Wind Resource

DUE: by 17th  March 5pm

Out of 75 (includes quality mark worth 5 marks – 70+5) worth 15%

Submit via Moodle. All work will go through Turnitin.

Understanding the wind resource


Weather and climate [12 marks]

Question 1

(a)    Figure 1a shows the location of the wind farm sites all the wind farms in the South and SE States.

Figure 1b is the associated MSLP chart, which corresponds to around Monday 10th  February 2025 (a snapshot at 11am). By looking at the synoptic map (Figure 1b), name all the features marked with blue arrows (4 in total), and in a short sentence explain their effect on the weather.           [4 marks]

Figure 1a. Location of the wind farms in the SE and Eastern states.

Figure 1b. MSLP chart associated with Fig. 1a.

(Hint: You may wish to refer to the following webpage on the Australian Bureau of Meteorology website which describes the motion of air in high and low pressure systems with animations, and provides a basic introduction to weather maps and isobars:www.bom.gov.au)



(b) The wind farm energy production by capacity is shown in Figure 1d for Tasmania, and one wind farm in Victoria. As you can see it is highly varied depending on location and weather. Looking at all Figures 1a. 1b and 1c, 1d, note down how the weather system will impact the wind farms in Tasmania, relate it back to the capacity data. What could have made Bald Hills wind farm so high? (Note you may need to go onto the website https://anero.id/energy/wind-energyto see the names of the farms)    [4 marks]

Figure 1c, zoomed in of 1a

Figure 1d. Capacity factor of wind generation from Tasmania and Bald Hill wind farm Vic.



(c) Looking at Figure 1a. Note down on a state wide level (NSW, VIC, SA and Tas) how each state performs overall in relation to the weather map (weather systems each state is experiencing) in Figure 1b. What can we conclude about grouping of wind farms based on your findings?               [4       marks]

https://anero.id/energy/wind-energy

Weather maps [12 marks]

Question 2


Figure 2 and 3. MSLP chart for Winter and Summer, retrieved from the BoM

http://www.bom.gov.au/australia/charts/synoptic_col.shtml.

a)    Produce a table stating the relative wind direction (using the meteorological convention) for each location, for each chart. Format your table in the same way as Table 1. Note (for relative wind speed strength choose between calm-gentle; moderate; strong)[9 marks]

Location 1

.

 

Day

Wind Direction

Relative Wind Speed Strength

14 July

 

 

13 November

 

 

Location 2

 

 

Day

Wind Direction

 

14 July

 

 

13 November

 

 

Location 3

 

 

Day

Wind Direction

 

14 July

 

 

13 November

 

 

b)   Discuss how the wind power production with the evolution of the weather pattern in winter (Fig.

2 - July) would change over the 3 locations. Refer to the current situation, and knowing how the pressure systems move from west to east explain how the States locations power production would change as the systems move across.           [3 marks]


The atmosphere [16 marks]

Question 3

The following information is for the questions below:

Location 1 – near Perth Airport WA

Annual average Surface temperature –  18.8 C

Annual average Mean sea-level pressure (MSLP) –  1015 hPa

Elevation – 20 m above sea-level

Surface profile – forest land

Scale height – 8000 m

Atmosphere – dry

Location 2 – near Mudgee, NSW

Annual average Surface temperature – 15.5 C

Annual average Mean sea-level pressure (MSLP) – 1019 hPa

Elevation – 471 m above sea-level

Surface profile – farmlands isolated trees and small buildings

Scale height –  8500 m

Atmosphere – wet

R= 286.9 [J/kg K]

Turbines with a hub height of 100 metres exist at locations 1 and 2.

[IMPORTANT NOTE: MSLP at a location refers to what the surface pressure would be at that location  if it were at sea-level, that is 0 m elevation. The actual pressure at the ground level will be different if it is elevated.]

For BOTH locations:

[NOTE: marks are total for both locations, under each answer first calculate Location 1 and then Location 2 – see Figure 5]

(a) Calculate the density of the air at hub height.                                                                           [6 marks]

(b)  Estimate  the gradient wind speed  using the  isobar  spacing  and  the  equation for geostrophic balance and the data provided for the gradient height in Figure 5. Clearly mark on the map the Δx selected to evaluate ΔP.                                                                                                                       [6 marks]



Figure 5. Locations for question 3, part b. Retrieved from BoM

Table 2. Gradient height data [1]

(c) Based on your answer to part b) and using the data provided for the roughness length scales in Table 2, estimate the wind speed at hub height. When selecting a roughness scale, pick a mid-point value.                                           [4 marks]


Characterising the wind resource [20 marks]

Question 4

a) Consider the data in the excel spreadsheet which represents recordings of wind speed taken at the Mudgee BoM station at 10m above ground level in km/hr. Using the hourly values determine the factors 'c' and 'k' for the year 2015. Show all relevant calculations (you can use excel/python to sort the data, and remember the units) .             [3 marks]

b)   In the same excel spreadsheet there is also data for the same latitude and longitude as the

Mudgee station, but from MERRA-2 reanalysis data (100m height) for the year 2015. Using the hourly values determine the factors 'c' and 'k' for the year 2015. Show all relevant calculations.   [2 marks]

c)     How do the values for ‘c’ and ‘k’ compare from the two different datasets? Comment on what could be a cause of any differences in values.                                            [3 marks]

d)  The  ``c''  and  ``k''  parameters  that  you  calculated  in  Q4-a  were  obtained  from  a  bureau  of meteorology (BoM) weather station closest to Location 2 (from Figure 5). The data was recorded at 10 metres elevation (above ground level) and the nearby terrain is farmland, with few trees and buildings. You are considering expanding the Crudine  Ridge Wind  Farm  (134  MW).  The area you propose is predominantly open grassland. The turbines you wish to install will have a hub-height of 100 metres.

(i) Determine the “c” and “k” parameters that are relevant for your prospective wind farm at the wind farm site (using the BoM data). Show all working (explain all working and include a  print screen of the excel/python sheet used to determine the factors).  [4 marks]

(ii) Translate the “c” parameter at hub height (100m) at the BoM station location, and calculate the ‘’c’’ and ‘’k’’ values for the MERRA2 data tab Crudine Ridge Wind farm. Using the three values of “c”(station, station translated wind farm and MERRA2 Crudine Ridge Wind farm), calculate the power potentials (wind power per unit area) at:

•    Hub height at the station location

•    Hub height at the wind farm location

•    Hub height using the MERRA data in the tab Crudine Ridge wind farm    [4 marks]

e) Comment on the implications of any differences for predicting the wind power potential. Give two reasons why wind data from a weather station should not be directly used when predicting the wind  resource for a nearby wind farm (justify your reasoning).           [3 marks]

f) How does the MERRA2 data at the site (tab named MERRA2 Crudine Ridge Wind farm) compare to your translated wind farm potential data?                                                                                      [1 mark]

Wind farm performance [10 marks]

Question 5

The following questions will use the Weibull parameters calculated in questions Q4-d (for the wind farm location at hub height and the MERRA2 wind farm location Crudine Ridge wind farm) and the wind turbine power curve in Table 4.

(a) Present the following graphs for both sets of Weibull parameters:

(i) Weibull PDF  (ii) Weibull CDF

Present results of both sets of Weibull parameters on a single set of axes and comment on the differences you see between the two values used.                                                         [3 marks]

For both sets of Weibull parameters for the following questions:

(b) (i) Present the velocity-duration curve (present results of both sets of Weibull parameters on one set of axes).

Hint: You will first need to bin wind speeds in 1 m/s increments and calculate the probability of each binned value of wind speed using the Weibull CDF for both sets of Weibull parameters.  Use this information to determine the number of hours per year that the wind is blowing within each bin range.  [4 marks]

(ii) Calculate the annual energy production and capacity factor for a single turbine installed at the wind site.                                                                                                                                         [3 marks]

 

Table 3. Wind Power Table Data [http://wind-data.ch/tools/powercalc.php]


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图