代写15-122: Principles of Imperative Computation — Summer 2019 Final Exam代做C/C++程序

15–122: Principles of Imperative Computation — Summer 2019

Final Exam

Friday 9th August, 2019

1  Graph Representation [C]  (55 points)

The graph interface seen in class and reported on page 30 could return a collection of neigh– bors of a vertex as a NULL–terminated linked list of vertices.  An adjacency matrix imple– mentation had to construct this list when graph_get_neighbors was called, and later free it when graph_free_neighbors was called.  An adjacency list implementation could be more efficient: it simply returned the pointer to the adjacency list of the requested vertex and did nothing to dispose of it.

Task 1.1 The following client function uses the graph interface:

unsigned  int count_neighbors_of_0(graph_t  G)  {

REQUIRES(G   !=  NULL  &&  graph_size(G)  >  0);

vert_list  *nbors  =  graph_get_neighbors(G,  0);

unsigned  int c  =  0;

while (nbors   !=  NULL)  {

c++;

nbors  =  nbors->next;

}

graph_free_neighbors(nbors);

return c;

}

This function, although it technically respects the graph interface seen in class, is prob– lematic. Assume we are using an adjacency matrix implementation of graphs.  What is wrong with this function?

Task 1.2 Here is another snippet of code imagine that, for an unknown reason, the client wants to ignore all neighbors that are multiples of 10, so they set them to a dummy value that their later code can ignore:

vert_list  *nbors  =  graph_get_neighbors(G,  5);

for (vert_list  *p  =  nbors;  p   !=  NULL;  p  =  p->next)  {

if (p->vert  %  10  ==  0)

p->vert  =  99999999;  //  set  vertex  to  dummy  value }

unknown_function_that_hates_multiples_of_ 10(nbors);

graph_free_neighbors(nbors);

Again, this client code respects the graph interface but is still problematic. Now assuming we are using an adjacency list implementation, what is undesirable about this function?

An approach to avoid this problem altogether is to make the type of values returned by graph_get_neighbors abstract. Here are the relevant parts of a modified graph interface that does precisely that: it exports the type neighbors_t without revealing how it is defined. The new function neighbors_next returns the next vertex in a collection of neighbors, assuming that there are more neighbors. The function neighbors_empty checks this property.

Therefore, we can now get a collection of neighbors by calling graph_get_neighbors, and then repeatedly check whether it is empty and ask for the next neighbor if not.

C0–style contracts are included for readability.

//typedef  ________  *neighbors_t ;                                                       //  NEW

neighbors_t   graph_get_neighbors(graph_t  G,  vertex  v);   //  UPDATED

//@requires G   !=  NULL;

//@requires v  < graph_size(G);

//@ensures \result   !=  NULL;

vertex  neighbors_next(neighbors_t  N);                                          //  NEW

//@requires N   !=  NULL  &&   ! neighbors_empty(N);

bool neighbors_empty(neighbors_t  N);                                            //  NEW

//@requires N   !=  NULL;

void neighbors_free( neighbors_t   N);                                            //  UPDATED

//@requires N   !=  NULL;

Task 1.3 Using this new graph interface, modify the code given on page 1 for the client function

count_neighbors_of_0 to prevent the problem you unveiled in task 1.

int count_neighbors_of_0(graph_t G)  {

REQUIRES(G != NULL && graph_size(G) > 0);

int c = 0;

neighbors_t  nbo rs  = ;

while ( )  { c++;

; }

; return c;

}

We will now update the adjacency list implementation of the graph interface to match the new interface. Recall the definition of the internal type graph:

typedef struct adjlist_node  adjlist;

struct adjlist_node  { vertex  vert;

adjlist  *next; };

typedef  struct graph_header  graph;

struct graph_header  { unsigned int size;

adjlist  **adj; };

You may assume that the specification functions is_graph and is_vertex have been defined for you.

We concretely define the type neighbors_t as follows:

struct neighbor_header_adjlist  {

adjlist*  next_nbor; };

typedef struct neighbor_header_adjlist  nbors_AL;

typedef nbors_AL  *neighbors_t;  //  for  the  client

The type nbors_AL contains one field, which is a pointer to the node which contains the next vertex that should be returned (or NULL if there are no more neighbors).

Task 1.4 Implement the function graph_get_neighbors so that it has constant cost.  Include ap– propriate contracts.

nbors_AL  *graph_get_neighbors(graph_t G, vertex v)  {

}

Task 1.5 Implement the function neighbors_empty which checks whether there are any more neighbors in a collection. Include appropriate contracts.

bool neighbors_empty(nbors_AL *N) {

}

Task 1.6 Implement the function neighbors_next, which also should have constant cost. It should not allocate any additional memory. Include appropriate contracts.

vertex  neighbors_next(nbors_AL *N)  {

}

Task 1.7 Complete the body of neighbors_free so that, by the time we are done using a graph, all allocated memory has been freed and none has been freed twice.

void neighbors_free(nbors_AL *N)  {

}

Next, we will do the same with the adjacency matrix implementation of the graph interface. The internal types graph and nbors_AM are now defined as follows:

typedef  struct graph_header  graph;

struct graph_header  { unsigned int size;

bool **adj;  //  2-D  array };

struct neighbor_header_adjmatrix  { bool * row;

unsigned int length;

unsigned  int next; };

typedef  struct neighbor_header_adjmatrix  nbors_AM;

typedef nbors_AM  *neighbors_t;  //  for  the  client

Neighbor collections (right) are defined as a struct containing a pointer to the row of the matrix for the vertex whose neighbors we are considering, the length of this array, and the index of the next cell of this array that contains a neighbor of the vertex. This means you’ll need to very carefully consider how to set the next field in both graph_get_neighbors and neighbors_next.

7pts Task 1.8 Implement the function graph_get_neighbors. Include appropriate contracts.

nbors_AM  *graph_get_neighbors(graph  *G,  vertex v)  {

}

What is the worst–case complexity of graph_get_neighbors as a function of the number v of vertices and the number e of edges in the input graph?

O( )



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图