代做ETB1100 Business Statistics Tutorial 10代写数据结构语言程序

ETB1100 Business Statistics

Tutorial 10

Driving Business Decisions Using Regression: Exploring Relationships and Predictive Power Through Correlation and Linear Regression Analysis

Download files from the Tutorial TEN Questions folder on Moodle

If you have not already done so, download the following files for use in these Week 10  Tutorial questions which are found in the Tutorial TEN Questions folder on Moodle .

•   Random Sample_DEMO.xlsx

•   Burgers.xlsx

•    Car Dealership.xlsx Q10.1

This question uses data in the worksheet labelled Burger, in the file labelled Burgers.xlsx

It gives real data on the SALES and PRICE for franchises of a (unnamed) burger chain in a selection of different cities across the US. SALES is in thousands of dollars and is the dependent variable (Y), while PRICE is an index over all products sold in a given month and is expressed as a notional number of dollars for a meal, and is the independent variable (X).

(a)  What do you expect the relationship to be between PRICE and SALES?

(b)  Use Excel to plot a scatter diagram [Insert>Scatter and select unjoined dots] of SALES(Y) against PRICE(X), (with SALES on the vertical axis).

Remember to follow the approach that you practiced in your Pre-Class Exercises on the ice cream sales data and display the R2  on each chart.

Comment on how this visual relationship compares with your expectations.

(c)  Estimate a model for the relationship between SALES and PRICE, by using Excel to

produce the simple linear regression output.  Remember to follow the approach that you practiced in your Pre-Class Exercises on the ice cream sales data.

Include the following extra feature:

In addition to checking “Labels”, also check “Confidence level” and in the adjacent field, type “99”

(This will provide a 99% confidence interval for population coefficients in addition to the 95% confidence interval that is always provided.)

As a check that your output is correct, make sure that that the fourth number from the top of the output, Standard Error, is 5.096858

(d)  Based on the output produced in (c), state the estimated linear regression equation for this data, being sure to define the variables.

(e)   Using a 5% level of significance, conduct a hypothesis test to determine whether there is evidence that a linear relationship exists between PRICE and SALES. (Remember, only the p-value approach is used in regression analysis).  Remember to show ALL working, ALL  steps AND interpret the conclusion in context of the question.

(f)  What is the slope of the estimated regression line?  Provide an interpretation of this value.

(g)  State the value of the intercept of the regression line.   Give an interpretation of this value and discuss whether it is meaningful in this case.

[Note that when interpreting the intercept and slope, it is important to take account of the units in which the data is specified.  In the current case, in particular, the sales level is in   thousands of dollars.]

Please have this output ready to discuss in the tutorial.

(h)  State the sample value of the correlation coefficient between PRICE and SALES, and interpret this value.

(i)    State the coefficient of determination and interpret this value.

(j)   Using your estimated regression equation, predict the average/expected sales amount a franchise could expect if the cost of a meal was set to $6.25.

(k)  Is this prediction likely to be reasonable/valid?  Explain briefly.

(l)   State and interpret the 95% and 99% confidence intervals for the slope coefficient. Compare and comment on the width of these intervals.

Q10.2

This question uses the data file Car Dealership.xlsx

A used car dealership is considering the factors that determine the sale price of used Toyota Camry passenger vehicles.  As a first attempt at predicting the price, it is assumed that the main factor affecting the resale value is the distance the car has travelled (i.e. the odometer reading).  For a sample of 13 cars, the following data is obtained:

(a)  What do you expect the relationship to be between Price and Odometer Reading?

(b)  Use Excel to plot a scatter diagram against Odometer Reading vs Price.

Remember to follow the approach that you practiced in your Pre-Class Exercises on the ice cream sales data and display the R2  on each chart.

Comment on how this visual relationship compares with your expectations.

(c)    Based on the scatter plot, comment on whether it is appropriate to fit a regression line to the data.

A regression analysis was performed using Excel, with the following result:

(Since you have the data, you should also produce this regression output and check your output against that which is provided here.)

(d)  Using the Excel output provided, state the estimated linear regression equation for this data, being sure to define the variables.

(e)  Using a 5% level of significance, conduct a hypothesis test to determine if a linear

relationship exists between ODOMETER READING and SALE PRICE.  (Remember, only the p-value approach is used in regression analysis).  Remember also to show ALL working, ALL steps AND interpret the conclusion in context of the question.

Given that a linear relationship DOES NOT exist, in the workplace, there is no point in continuing with this model, interpreting the slope coefficient etc.

HOWEVER, IN THE CLASSROOM, WE WILL TAKE ADVANTAGE OF THIS EXAMPLE AND STILL USE IT FOR SOME EXTRA PRACTICE HERE .

(f)   What is the slope of the estimated regression line?  Provide an interpretation of this value.

(g)  State the value of the intercept of the regression line?  Give an interpretation of this value and discuss whether it is meaningful in this case.

(h)      Look again at the output.  The first number at the top of the output is labelled “Multiple

R” .  This number is the absolute value of the sample correlation coefficient r between the two variables.  In order to find the sign of the correlation coefficient, you must look at the sign of the slope.

So, state AND interpret the value of the correlation coefficient between odometer reading and price?

(i)  State the coefficient of determination and interpret this value.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图