代写DPBS1110/BMGT1310 Evidence-Based Problem Solving Unit 2调试SPSS

DPBS1110/BMGT1310 Evidence-Based Problem Solving

Unit 2: Breaking Down Problems and Gaining Insights

Tutorial Questions

Case  Part  1:  Decoding  the  Furniture  Store's  Sales  Puzzle:  Visualising Multiple Perspectives with Logic Trees

Background: Modern Living, a leading national furniture store franchise, has recently faced an unexpected  sales  decline.  The  management  team,  keen  on  understanding  the  underlying causes,  has  called  upon different  analysts to examine the  problem. A  logic tree,  a visual analytical tool that breaks down problems into their core components, has been suggested as a potential means to shed light on this situation. With their unique background and perspectives, each analyst is asked to approach the problem using a logic tree.

Your Task: As emerging problem solvers, you are tasked with developing a logic tree to analyse the sales decline at Modern Living. Remember, a logic tree is not a fixed solution but a reflection of a problem solver's perspective and understanding of the issue.

a)  Your tutor will allocate the following initial branches to your group. 

Begin your logic tree with the assigned branch. From this starting point, expand your logic tree by adding two more layers, ensuring that:

i)   Each layer dives deeper into potential factors or reasons explaining the sales trends within the branch.

ii) The branches at each layer are mutually exclusive and collectively exhaustive (MECE).

b)  How does the choice of initial branches (which simulate different analysts' perspectives) influence your logic tree's subsequent layers and insights?

c)  How does the logic tree help visualise and convey your thought process and perspective to others? In what ways can logic trees serve as a collaborative tool, encouraging diverse viewpoints and fostering understanding among team members?

d)  Preliminary analysis indicates that poor delivery services might be a potential driver for the sales decline. Your team wants to understand the various factors contributing to the customer  delivery  experience.  Create  a  logic  tree  to  break  down  and  analyse  the components of the customer delivery experience. A two-layer logic tree is sufficient as the team needs a quick analysis.

Case Part 2: Data-Driven Insights into Freight Carrier Delivery Performance

In the first part of the case, you investigated the sales decline of Modern Living by visually breaking down the problem using a logic tree. This exercise revealed multiple facets potentially contributing to the sales decline. One of the emerging concerns from the analysis was the role of delivery services.

Having identified delivery service as a potential area of concern, Modern Living's management has now shared a dataset detailing recent delivery records. This dataset contains information about various orders, their respective delivery times, the weight of items, the number of items, and if any damages were reported. All this data is segmented by the three main freight carriers: Modern Living uses: AllStar Freight, Bolt Logistics, and CleverCart Deliveries.

Dataset Description:

The dataset includes the following fields for a sample of 450 deliveries:

   Order Number: A unique identifier for each order, e.g., 0ZCVA3C9.

•    Delivery Month: The month in which the delivery was made, e.g., January.

•    Freight Carrier: The name of the freight carrier responsible for the delivery, e.g., AllStar Freight.

•    Delivery Time (days): The number of days taken for delivery, e.g. 5 (i.e. 5 days).

•    Number of Items: The number of items in the order, e.g. 7 (i.e. 7 items).

   Weight of Items (kg): The total weight of items in the order, e.g. 49.9 kg.

•    Damages Reported: Indicates whether damages were reported for the

delivery, e.g., YES/NO.

Your Task:

a)  Understanding the data: Imagine you are part of the Modern Living data analysis team. Before diving into deeper investigations, it is crucial for us to understand the nature of our data clearly.

i)   Identify the data type for each of the variables in the dataset.

b)  Starting  with the  Right  Set  of Questions:  Utilising the  5Ws for  Initial  Data Analysis: Modern  Living's  management  is  keen  on  understanding  its  delivery   performance, especially  concerning  delivery  time  and  reported  damages.  As  you  embark  on this analytical journey, it's pivotal first to ask the right questions that will lead you to the insights hidden within the data. Remember, each piece of data tells a story. Your role is to piece together this story in a meaningful way.

The 5Ws (What, Where, When, Who and Why) we learnt last week is a great tool to identify questions that will guide your data analysis and potentially uncover insights to help Modern Living address its challenges. Using the 5Ws framework:

i)   Formulate Key Questions: Outline the questions you believe are essential to uncover insights into Modern Living's delivery performance.

ii)  Identify Relevant Variables: For each of your 5W questions, identify which variables from the dataset will help you answer them.

iii) Select  Analytical  Approaches:   Decide   on   the   statistical   measures   or   visual representations suitable for each question. Consider what would best highlight the insights or patterns in the data.

c)  In-depth Analysis of  Delivery  Performance:  The  management  at  Modern  Living  has established delivery benchmarks. They categorise a delivery time of over 8 days as "Late", anything above 14 days as "Very Late", and aim for an average delivery time of 7 days. Additionally, they have set a benchmark where a damage rate of 10% or less is acceptable. This will be important in understanding and evaluating the performance of the freight carriers

i)   Descriptive Statistics and Visualisation: Delivery Time Analysis:

1.  Using Excel, calculate the following descriptive statistics for the entire dataset's delivery time:

•          Mean

•          Median

•         Standard Deviation

•          Minimum

•         Maximum

•          Range (Max - Min)

2.  Create a histogram in Excel to visually represent the distribution of delivery times. What can you infer from the histogram about the general delivery performance?

Damage Analysis

3.  Using a  PivotTable  in  Excel,  calculate the  number of deliveries with reported damages, and the percentage of reported damages out of the total number of deliveries.

Hint: Create a PivotTable with the following fields and calculate the percentages.

 

4.  Create a pie chart in Excel to visually represent the percentage of deliveries with and without reported damages. What insights can you gather from this pie chart?

5.  Compare  the  descriptive  statistics  and  analysis  results  for  delivery  time  and reported  damages  against  the   management's  benchmarks.  Based  on  your analysis, which area (delivery time or reported damages) is comparably more important and requires first attention?

ii)  In-depth Analysis by Freight Carrier – Focusing on Delivery Time

1.  Using a PivotTable in Excel, calculate the mean delivery time and standard deviation for each freight carrier.

Hint: Create a PivotTable with the following fields

 

2.  Using a PivotTable in Excel, calculate the mean delivery time for each freight carrier by delivery month.

Hint: Create PivotTable with the following fields

 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图