BISM3206代做、代写Python编程语言
O-BISM3206 ver or Under Asking -BISM3206

Classifying Property

Price Outcomes in the

Australian Market


BISM3206 Assignment

2025 S1 – Assignment



Context

The Australian real estate market is one of the most dynamic and competitive in the world, offering a

wide range of properties to both buyers and sellers. For homeowners looking to sell, setting the right

price is a critical, and often emotional, decision. After all, property transactions are among the most

significant financial events in a person's life.

Sellers typically set a listing price based on what they believe their home is worth and what the market

might bear. But things don’t always go as planned. Some properties attract intense buyer interest and

sell for more than the asking price. Others fall short, forcing the seller to accept less than they’d hoped.

If sellers had a way to estimate in advance whether their listed price is likely to be exceeded or undercut,

they could make more informed pricing decisions, better manage expectations, and potentially

maximize their return.

In this assignment, your task is to build a binary classification model that predicts whether a property

will be sold at a higher or lower price than the advertised price set by the seller.

Target Variable

The target variable price_outcome indicates whether a property was sold at a higher, equal or lower

price compared to the listing price.

The values in the price_outcome column are:

Higher: Sold price is greater than the listed price

Equal: Sold price is the same as the listed price

Lower: Sold price is equal to or less than the listed price

This is a binary classification problem; therefore, you should not include any data where the target

value is ‘Equal’. Your model should learn to predict this outcome using the available features of each

property outlined below.

Dataset

You are provided with a dataset of 6,957 recently sold properties, between February 2022 and February

2023. The predictor variables are:

1. property_address: the address of the property

2. property_suburb : The suburb the property resides in

3. property_state : The state which the property resides in

4. listing_description: The description of the house provided on the listing

2025 S1 – Assignment

5. listed_date: The date the property was listed for sale

6. listed_price: The price the property was listed for

7. days_on_market: The number of days the property was on the market

8. number_of_beds: The number of bedrooms on the property

9. number_of_baths: The number of bathrooms on the property

10. number_of_parks: The number of parking spots on the property

11. property_size: The size of the property in square meters

12. property_classification: The type of property (House/Unit/Land)

13. property_sub_classification: The sub-type of the property

14. suburb_days_on_market: The average days in market that a property is on sale for in a suburb

15. suburb_median_price: The average median property price in a suburb


Deliverables

You must submit the following:

1. A written report (via TurnItIn).

2. A Jupyter Notebook (via the Assignment Submission link).

Your report may be structured as:

Four main sections: a) Introduction, b) Model Building, c) Model Evaluation, d) Findings &

Conclusion, or

Three main sections: 1) Introduction, 2) Model Building & Evaluation, 3) Findings &

Conclusion

Both structures are acceptable.

Visuals & Output

You may include up to 8 charts or tables in your report.

All visuals must be supported by the analysis in your Jupyter Notebook.

Your notebook must run without errors — only analysis up to the last successfully run cell will

be marked.

Do not edit the original Assignment_Data.xlsx file before importing.

Formatting and professionalism

Maximum 1500 words (+/- 10%) – including title page, charts and tables.

Use formal language and full sentences (no bullet points).

Times New Roman, 12pt font, single-spaced.

No appendices allowed.

Reports can be written in first person if preferred.

Submission

Submit two files with the following naming convention:

StudentID.pdf and StudentID.ipynb

Written report: via TurnItIn (PDF or DOCX format only)

2025 S1 – Assignment

Jupyter Notebook: via Assignment Submission link

Example: If your student ID is 12345678, submit:

12345678.pdf

12345678.ipynb

Do not zip your files.


Note on Academic Integrity

This is an individual assignment. You are encouraged to discuss ideas with your peers but must submit

your own work. Suspected plagiarism or collusion will be treated in line with university policy.

热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图