代做ELEC4310: Tutorial number 1帮做R编程

School of Information Technology & Electrical Engineering

ELEC4310: Tutorial number 1

(Review of three-phase and per unit calculations)

Question 1

A three-phase line, which has an impedance of (2 + j4) Ω per phase, feeds two balanced three phase loads that are connected in parallel. One of the loads is Y-connected with an impedance of (30 + j40) Ω per phase, and the other is ∆-connected with an impedance of (60 – j45) Ω per phase. The line is energized at the sending end from a 60-Hz, three phase, balanced voltage source of 120√3 V (rms, line-to-line). Determine:

(a) Current, real power, and reactive power delivered by the sending-end source;

(b) Line-to-line voltage at the load;

(c) Current per phase in each load;

(d) Total three-phase real and reactive powers absorbed by each load and by the line. Check that the total three-phase complex power delivered by the source equals the total three-phase power absorbed by the line and loads.

Question 2

Two balanced three-phase loads that are connected in parallel, which are fed by a three-phase line having a series impedance of (0.4 + j2.7) Ω per phase. One of the loads absorbs 560 kVA at 0.707 power factor lagging, and the other 132 kW at unity power factor. The line-to-line voltage at the load end of the line is 2200√3 V. Compute:

(a) Line-to-line voltage at the source end of the line,

(b) Total real and reactive power losses in the three-phase line,

(c) Total three-phase real and reactive power supplied at the sending end of the line. Check that the total three-phase complex power delivered by the source equals the total three-phase complex power absorbed by the line and loads.

Question 3

Two balanced Y-connected loads, one drawing 10 kW at 0.8 power factor lagging and the other 15 kW at 0.9 power factor leading, are connected in parallel and supplied by a balanced three-phase Y-connected, 480-V source.

(a) Determine the source current.

(b) If the load neutrals are connected to the source neutral by a zero-ohm neutral wire through an ammeter, what will the ammeter read?

Question 4

Three individual impedances ZΔ =20<60o Ω are connected in ∆ to a balanced three-phase 208-V source by three identical line conductors with impedance ZL = (0.8 + j0.6) Ω per line.

(a) Calculate the line-to-line voltage at the load terminals.

(b) Repeat part (a) when a ∆-connected capacitor bank with reactance (– j20) Ω per phase is connected in parallel with the load.

Question 5

Consider two interconnected voltage sources connected by a line of impedance Z=jXΩ as shown in Figure 1.

(a) Obtain expressions for P12 and Q12

(b) Determine the maximum power transfer and the condition for it to occur.

Figure 1

Question 6

Consider the balanced three-phase system as shown in Figure 2. Determine v1(t) and i2(t). Assume positive phase sequence.

Figure 2

Question 7

Draw an impedance diagram for the electric power system shown in Figure 3 showing all impedances in per unit on a 100-MVA base. Choose 20 kV as the voltage base for generator. The three phase power and line- line ratings are given below.

G1: 100 MVA   20kV                  X=9%;                T1: 120 MVA   20/200 kV         X=16%

T2: 120 MVA   200/20 kV         X=20%;             G2: 90 MVA      18kV                  X=10%;

Line:                  200 kV               X=100 Ω;           Load:                 200 kV  S=50MW+j75 MVAR

Figure 3

Figure 4 shows the oneline diagram of a three-phase power system. By selecting a common base of 100 MVA and 22 kV on the generator side, draw an impedance diagram showing all impedances including the load impedance in per unit. The data are given as follows:

G: 120 MVA

22 kV

X=0.2 per unit

T1: 60 MVA

22/220 kV

X=0.10 per unit

T2: 60 MVA

220/11 kV

X=0.10 per unit

T3: 60 MVA

22/110 kV

X=0.08 per unit

T4: 60 MVA

110/11 kV

X=0.08 per unit

M: 60 MVA

10.45kV

X=0.2 per unit

Lines 1 and 2 have series reactances of 48.4Ω and 65.43Ω, respecytively. At bus 4, three phase load absorbs 50 MVA at 10.45 kV and 0.8 power factor lagging. When the motor operates at full load, at 0.8 power factor leading, and at a terminal voltage of 10.45 kV (a) determine the voltage at bus 1 (i.e. at the generator bus) and (b) the generator and motor internal EMF.

Figure 4

Consider the single–line diagram of the power system shown in Figure 5. Equipment rating are:

Generator 1     at Bus 1                                        100 MVA, 20kV, X’=0.21 per unit

Generator 2     at Bus 2                                        100 MVA, 20kV, X’=0.21 per unit

Synchronous Motor 3 at Bus 3                           150 MVA, 22kV, X’=0.21 per unit

Three phase Δ-Y Transformers                          100 MVA, 220kV Y/22 kVΔ, X=0.12 per unit

(T1, T2, T3, T4)

Three phase Y-Y transformer T5:                      150 MVA, 220 kV Y/22 kV Y, X= 0.12 per unit

Neglecting resistance, transformer phase shift, and magnetising reactance, draw the equivalent reactance diagram. Use a base of 100 MVA and 220 kV for the 50- Ω line. Determine the per unit reactance’s. For the power system in this problem, the synchronous motor absorbs 150 MW at 0.8 power factor leading with the bus 3 voltage at 20 kV. Determine the bus 1 and bus 2 voltages in kV.  Assume that generators 1 and 2 deliver equal real powers and equal reactive powers. Also, assume a balanced three-phase system with positive sequence sources.

Figure 5

Question 10

Express in per unit all the quantities shown in the line diagram of the three-phase transmission system shown in Figure 6. Construct the single-phase equivalent circuit. Use a base of 100 MVA. The lines are 80km in length with resistance and reactance of 0.1 Ω and 0.5 Ω per km respectively, and a capacitive susceptance of 10µS per km (split equally between the two ends. Assume the capacity of transformers 500MVA (the same as the Generator’s)

Figure 6

Question 11

An aggregated load is supplied from a 13 kV 60 Hz source and consists of the parallel combination of:

•   A load of 10 MW at 0.9 pf lagging

•   A load of 15 MVA at 0.85 pf lagging

•   A resistance of 80 Ω in series with an inductive reactance of 10 Ω

•   A resistance of 70 Ω in parallel with an inductive reactance of 200 Ω

Calculate the reactive compensation required to achieve unity power factor. Calculate the magnitude and phase of the current drawn from the source with and without compensation.

Question 12

A load of 5 MW at 0.8 pf lagging is supplied from a 13 kV 60 Hz source. Calculate the reactive compensation needed to improve the power factor to 0.85, 0.9, 0.95 and 1.0. In each case, express the value of the compensation in MVAr, Ω, and mF. Calculate the magnitude and phase of the current drawn from the source.

Question 13

A three-phase load supplied from a 1 kV three-phase, 60Hz source consumes 1 kW at 0.9 pf lagging. Model this load:

•   As  a  balanced  Y-connected  load  where  each  phase  consists of a  resistance  in series with an inductive reactance

•   As  a  balanced  Δ-connected  load  where  each  phase consists of a  resistance  in series with an inductive reactance

•   As  a  balanced Y-connected  load where each  phase consists of a resistance in parallel with an inductive reactance

•   As a  balanced Δ-connected  load where each  phase consists of a  resistance in parallel with an inductive reactance

Calculate the values of these inductive reactances in Ω and in H.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图