代写QBUS6600 Data Analytics for Business Capstone Semester 1, 2025 Assignment 1代写Python语言

QBUS6600

Data Analytics for Business Capstone

Semester 1, 2025

Assignment 1 (Individual Assignment)

1. Key Instructions

Required submission:

Written report (in pdf, due date: Monday, March 31 by the end of the day).

Confidentiality Deep Poll online form (deadline for submission: Monday, March 17). Detailed submission instructions for the report will be posted on Canvas in Week 5.

Weight: 30% of your final grade.

Length: Your written report should have a maximum of 12 pages (single spaced, 11pt). Cover page, references, and appendix (if any) will not count towards the page limit. Please keep in mind that making good use of your audience’s time is an essential business skill: every sentence, table or figure should serve a purpose.

2. Problem Description

Please read through the Project Outline document for your selected industry project, which you can find on the ‘Learn about our industry projects’ page in the Week 1 module on Canvas. Focus on the Problem Description section of the Project Outline, especially the first and third bullet points (EDA and Strategy), which are the most relevant bullet points for Assignment 1. You are not required to build a predictive model  for Assignment 1.  Both your analysis and  your recommendations should be in line with the requirements/suggestions provided in the Project Outline.

As a business analyst, you will conduct Exploratory  Data Analysis  (EDA) of the data corresponding to your industry project. You should aim to find or reveal all possible properties, characteristics, patterns, and  statistics hidden in the data, supporting your findings  with insightful plots and relevant statistical output.

Use the results from your EDA to outline a preliminary strategy or provide  preliminary recommendations to the UNICEF team corresponding to your selected industry project. You will have a chance to refine these recommendations in Assignment 2.

3. Written Report

The purpose of the report is to describe, explain, and justify your findings to the UNICEF team corresponding to your selected industry report. You may assume that team members have training in business analytics, however, they are not experts in statistics or machine learning.

The team’s time is important: please think about the most structured way to present your findings. Be concise and objective.

Suggested outline for the main parts of the report (further details below):

1)  Problem formulation.

2)  Data processing.

3)  Exploratory Data Analysis (EDA).

4)  Conclusions and preliminary recommendations.

You should consider breaking down the longer parts into smaller sections.

4. Marking Scheme

Business context and problem formulation

5%

Data processing

30%

Exploratory Data Analysis (EDA)

45%

Conclusions and Preliminary recommendations

10%

Writing and presentation of the report

10%

Total

100%

5. Rubric (basic requirements)

Business context and problem formulation. Your report gives a detailed description of the problem that is being investigated, providing the context and background for the analysis.

Data processing. You describe the data processing steps clearly and in sufficient detail, justifying and explaining your choices and decisions. You handle missing values and other data issues appropriately. You describe and explain your data transformations and/or your feature engineering process (if any). Your choices and decisions are justified by data analysis, domain knowledge, logic, and trial and error (if necessary).

Exploratory data analysis (EDA). Your report provides a comprehensive description of your EDA  process,  presenting selected results. Your analysis is sufficiently rich, and  your visualizations are insightful. You study key variables and relationships among them using appropriate plots and descriptive statistics. You note any features of the data that may be relevant for model building in Assignment 2. You note the presence of outliers and any other anomalies that can affect the analysis. You explain the relevance of the EDA results to the underlying business problem and your subsequent recommendations. You clearly describe and justify  the  methods in your analysis. The choice of methods is logically related to the substantive problem, underlying theoretical knowledge, and data analysis. You interpret the statistical outputs that you provide. You report crucial assumptions  and whether they  are potentially violated.

Conclusions and recommendations. The reasoning from the analysis and results to your conclusions and recommendations is logical and convincing. Your conclusions and recommendations are written in plain language appropriate for non-technical audience.

Writing. Your writing should be concise, clear, precise, and free of grammatical and spelling errors. You use appropriate technical terminology. Your paragraphs and sentences follow a clear logic and are well connected. If you use an abbreviation or label, you define it first.

Report layout. Your report is well organised and professionally presented, as if it had been prepared for a client later in your career. There are clear divisions between  sections  and paragraphs.

Tables. Your tables are appropriately formatted  and have a clear layout. The tables have informative row and column labels. The tables are relatively easy to understand on their own. The tables do not contain information which is irrelevant to the discussion in your report. The tables are placed near the relevant discussion in your report. There is no text around your tables, and your tables are not images.

Figures (plots). Your figures are easy to understand and have informative titles, captions, labels, and legends. The figures are well formatted and laid out. The figures are placed near the relevant discussion in your report. Your figures have appropriate definition and quality. There is no text around your figures, and your figures are not screenshots.

Numbers. All numerical results are reported to suitable precision (typically no more than three decimal places, in some cases fewer).

Referencing. You follow the University of Sydney referencing rules and guidelines.

Python code. The text of your report should be entirely free of Python code.

Note: you are required to use Python for all the steps of your data analysis. While there is no Python code submission for Assignment 1, you should keep your code well-organized, so that you can easily extend/modify/reuse this code for the purposes of Assignment 2 (which will have a Python code submission requirement).

6. Deductions

Marks may also be deduced from each item in the marking scheme in the following cases:

•   The report is disorganised and/or has a poor layout.

•   There is an excess of abbreviations or labels that the reader may be unfamiliar with.

•   The report has an excessive number of grammatical or spelling mistakes.

•   The tables are difficult to read, for example, due to poor layout or labelling.

•   The figures are difficult to read, for example, due to poor layout or labelling.

•  Numbers are not appropriately rounded.

7. Late submission of the report

Late submissions are subject to a deduction of 5% of the maximum mark for each calendar day after the due date. After ten calendar days late, a mark of zero will be awarded.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图