代写QBUS6600 Project 1 Outline: UNICEF Australia – Predicting Response to Direct Mail Appeals代做留学生SQL语

QBUS6600 Project 1 Outline: UNICEF Australia – Predicting Response to Direct Mail Appeals

Background

UNICEF Australia is  a dedicated children's charity committed to delivering lasting impact for every child. It works in over 190 countries and territories to save children’s lives, to defend their rights, and to help them fulfil their potential, from early childhood through adolescence.

To strengthen its vital programs, UNICEF Australia is continuously improving its fundraising strategies through innovative campaigns, community engagement, and partnerships. By offering various  fundraising  initiatives—such  as  charity  events  and  digital  marketing  campaigns—it enables individuals and organizations to contribute in meaningful ways. UNICEF Australia is leveraging the use of data analytics to enhance propensity modelling, particularly by exploring how external data sources can improve the predictive performance. This data-driven approach enables more targeted and timely engagement with the appropriate audience, ultimately enhancing supporter experience and optimising long-term support. The potential benefits include greater marketing efficiency, leading to a huge impact on resources and aid delivered to children in need.

Problem Description

Use the available data (see ‘Data Description’below) to build a propensity model for direct mail (DM) appeals. The objective is to develop a model for predicting the likelihood of individuals or organisations making a donation within the next three months in response to a direct mail appeal. You can frame this task as a classification problem, where the goal is to predict whether an individual/organisation will make an action within the next three months. The project presents a unique opportunity to apply your data analytics skills to a real-world business challenge and contribute to the ongoing success of UNICEF Australia. Your work will play a  crucial role in helping UNICEF Australia improve audience selection of their direct mail appeals and make outreach more efficiently, making a positive impact on the lives of children globally.

In this project, you should:

•   Conduct Exploratory Data Analysis (EDA) to identify the top features and attributes that are likely to predict the future donation behaviour.

You should aim to find or reveal all relevant properties, characteristics, patterns, and statistics hidden in the datasets.

•   Develop a predictive model to forecast the likelihood of a donor making a donation over the next three months in response to a direct mail appeal.

You  can  implement  any  statistical  or  machine  learning  approaches  that  you  feel  are appropriate. Ensure that you justify the selection of your model and interpret the model in terms of the key attributes for predicting the future donor behaviour. Use the F1-score to evaluate the performance of your final model.

•   Based on your analysis, outline a strategy to help UNICEF Australia improve audience

selection of their direct mail appeals, increase the response rate, and improve fundraising efforts.

You should recommend a strategy for the UNICEF Australia team to execute, to take advantage of the key insights that you have identified, and the models you have built and validated. The strategy  could include any  enhancements and/or other interventions or changes  to  direct  marketing  campaigns,  backed  by  high-level  cost  estimates  and fundraising avenues accompanied by assumptions and/or supporting data.

Data Description

UNICEF Australia has provided you with their CRM data in multiple CSV files, including the information on donation transactions, campaign details, and descriptive features of the donors, such as address postdoc, donation type, and other relevant attributes.

You are required to utilize the existing CRM data and augment it with at least one third-party open- source data of your choice (e.g., Mosaic or ABS) to improve the accuracy of predictions.

UNICEF Australia has made efforts to ensure the data is relatively clean, however, we encourage you to perform. checks and conduct the necessary data processing and feature engineering. You are also welcome to explore external datasets to enrich your analysis and feature engineering.

Useful Tips

Data Processing: Select and process the necessary CRM data files required for your analysis. Use match keys to merge relevant datasets.

Train-Test Split: Implement a train-test split to validate your model's performance and prevent overfitting.

Feature Engineering: Perform. feature engineering to enhance model performance. Creating and transforming features can uncover hidden patterns.

Experiment with Models: Test various machine learning models to find the most suitable one. This experimentation is key to achieving high model performance.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图