代写ELEC4310 Power Systems Analysis- Tutorial-2代写数据结构语言

School of Electrical Engineering & Computer Science

ELEC4310 Power Systems Analysis- Tutorial-2

(Transmission Line 一 ABCD parameters)

Question 1

A 140 km, single circuit, three-phase transmission line delivers 50 MVA at 0.85 power factor lagging to the load at 132 kV (line to line). The line is composed of Drake conductors (outside diameter of 2.8 cm, and resistance = 0.075 Ω/km) with flat horizontal spacing of 3.65 m between adjacent conductors. Determine:

(a)  The series impedance and shunt admittance of the line

(b)  The ABCD constants of the line

(c)  The sending end voltage, current, real and reactive powers, and the power factor.

(d)  The percent regulation of the line.

Question 2

A three-phase, 50 Hz, completely transposed 345 kV, 200 km line has two conductors per bundle and the  following  line  constants:  z = 0.032 + j0.35Ω/km and  y = j4.2 × 10-6s/km.  Full  load  at receiving end of the line is 700 MW at 0.9 power factor lagging and at 95% of rated voltage. Assuming a medium length transmission line, determine the following:

(a)  ABCD parameters of the symmetrical π circuit

(b)  Sending end voltage Vs, current Is and real Power Ps .

(c)   Percent voltage regulation

(d)  Transmission line efficiency at full load.

Question 3

A 320 km transmission line has the following parameters at 50 Hz:

Resistance r = 0.13Ω/km per phase

Series reactance x = 0.49Ω/km per phase

Shunt susceptance b = 3.4 × 10-6s/km per phase

(a)  Determine the attenuation constant-α, wavelength-λ, and the velocity of propagation of the line at 50 Hz.

(b)  If the line is open circuited at the receiving end and the receiving end voltage is maintained at 100 kV line to line, determine the incident and reflected components of the sending end voltage and current of the line.

(c)   Hence, determine the sending voltage and current of the line.

Question 4

The general circuit constants of a double, three-phase, transposed transmission line is:

A = 0.97<0.49°

B = 52.88<74.79°Ω C = 0.0012<90.1°s

The  line is operated with a constant  receiving end voltage of 132  kV  line to  line, and one of the constant power factor values:

(a)  0.85 lagging

(b)   1.0

(c)  0.85 leading

Draw power circle diagrams to show how the sending end voltage varies as a function of the real power of the load at each of the power factor shown in (a), (b) and (c).

Question 5

A three-phase, 765-kV, 60 Hz transposed line is composed of four ACSR, 1,431,000-cmil, 45/7 Bobolink conductors per phase with flat horizontal spacing of 14 m. The conductors have a diameter of 3.625 cm and a GMR of 1.439 cm. The bundle spacing is 45 cm. The line is 400 km long, and for the purpose of this problem, a loss less line is assumed.

(a)  Determine the transmission line surge impedance Zc, phase constant- β, wavelength- λ, the Surge Impedance Loading (SIL), and the ABCD constants.

(b)  The  line delivers 2000 MVA at 0.8  power factor lagging at 735 kV. Determine the sending end quantities and voltage regulation.

(c)   Determine the receiving end quantities when 1920 MW and 600 MVAR are being transmitted at 765 kV at the sending end.

(d)  The line is terminated in a purely resistive load. Determine the sending end quantities and voltage regulation when the receiving end load resistance is 264.5 Ohm at 735 kV.

(e)  Series capacitors are installed at the midpoint of the line, providing 40% compensation. Determine the sending end quantities and the voltage regulation when the line delivers 2000 MVA at 0.8 pf lagging at 735 kV.

Question 6

A 69-kV, three-phase short transmission line is 16 km long. The line has a per phase series impedance of 0.125 + j0.4375Ω/km. Determine the sending end voltage, voltage regulation, the sending end power, and the transmission efficiency when the line delivers

(a)  70 MVA, 0.8 lagging power factor at 64 kV

(b)  120 MW, unity power factor at 64 kV

(c)  Shunt capacitors are installed at the receiving end to improve the  line  performance. The line delivers 70 MVA, 0.8 pf lagging at 64 kV. Determine the total MVAR and the capacitance per phase of the Y-connected capacitors when the sending end voltage is (i) 69 kV and (ii) 64 kV.

Question 7

A 50 HZ, 300 km, three-phase overhead transmission line has a series impedance of z = 0.8431<79.04° Ω/km and a shunt admittance of y = 5.105 × 10-6 <90° S/km.The load at the receiving end is 125 MW at unity power factor and at 215kV.

(a)  Determine the voltage, current, real and reactive power at the sending end and the  percent voltage regulation of the line. Also find the wavelength and velocity of propagation of the line.

(b)  Determine the ABCD parameters of the line when uncompensated.

(c)   For a series capacitive compensation of 70% (35% at the sending end and 35% at the receiving end), determine the ABCD parameters. Comment on the relative changes in the magnitude of B parameter with respect to the relative changes in the magnitude of A, C and D parameters. Also comment on the maximum power that can be transmitted when series compensated.

(d)  Given the uncompensated line of the problem described above, let a three-phase shunt reactor (inductor) that compensates for 70% of the total shunt admittance of the line to be connected at the receiving end of the line during no-load conditions. Determine the effect of voltage regulation with the reactor connected at no-load. Assume the reactor is removed under full-load conditions.

Question 8

A 50 HZ, 400V, 400m, three-phase overhead distribution system has 250,000 all-aluminium for phase conductors and 3/0 all-aluminium for neutral conductor. The sending end voltage is balanced and fixed at 1.02pu. The receiving end loads are unbalanced, 145A 0.9 lagging for Phase-A, 135A 0.99 leading for Phase-B, and 125A 0.95 lagging for Phase-C, w.r.t 0˚, -120˚, 120˚ (voltages at the sending end). Note the neutral is grounded at the sending end but not the receiving end.

(All distances are in feet for pole top configuration.)

(a) Determine the zabcn matrix in Ω/km.

(b) Determine the ABCD parameters with the modified line model.

(c) Calculate the receiving end phase voltages, voltage unbalance percentage and neutral current.

(d) If the receiving end voltages are too low, please list two possible solutions.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图