代写MLE5247 AY24/25 SEM 2 Assignment 2代做Python语言

MLE5247 AY24/25 SEM 2

Assignment 2

You have two options to choose from. Please pick the one that interests you the most. Each earns a maximum of 35 marks.

Option 1: Building and Implementing a Python Code

Task:

Use a neural network - such as a shallow MLP, a GNN, or even a GAN - to predict the band gap of a compound based on descriptors like composition or physical properties (e.g., density, formation energy).

Steps to Consider:

•     You may use the materials dataset provided with this assignment.

•     Feel free to modify the dataset if needed (e.g., by adding features, including additional data, or selecting a subset).

•     You  can use AI tools  (e.g., ChatGPT,  DeepSeek, Gemini, Co-pilot) to  help generate, debug, or improve your code. However, please acknowledge their use,  and  remember  that  these  tools  can  make  mistakes  or   produce incomplete code. You’re responsible for verifying that each step aligns with your objectives.

•     Train/test your network on the band gap regression problem.

•     Visualize the distribution of predicted vs. actual band gaps, and discuss any limitations.

Important Note:

Our  main  goal  here  is  not  to  produce  perfect  code  or  a  fool  proof  band gap predictor.  Your  strength  lies  in  your  materials  science  expertise,  so  focus  on applying your domain knowledge to design a model that’s appropriate for this task. Treat AI tools as a technical assistant that may not fully understand what you are trying to achieve.

Comments in Your Code:

•     Include   thought-process   comments   explaining  why  you   chose  certain parameters or models, any optimization considerations and other decisions, also shortcomings or how you might improve the approach further.

Evaluation:

•     Your reasoning and logic will be the primary basis for evaluation, so ensure your  ideas  and  insights  are  clearly  expressed  in  your  comments  and discussion.

o  Logical reasoning (~ 20 marks)

o  Accuracy of code & implementation (~10 marks)

o  Output (~5 marks)

Option 2: AlphaFold

Background:

AlphaFold - particularly AlphaFold2 from DeepMind - is a ground-breaking deep learning system that predicts a protein’s 3D structure from its amino acid sequence. It gained major recognition in 2020–2021 by outperforming all previous methods in the CASP (Critical Assessment of protein Structure Prediction) competition and was honoured with the 2024 Nobel Prize in Chemistry.

Task:

Conduct a literature survey to explore how AlphaFold actually works - both the ML- based and non-ML techniques that helped crack the longstanding protein folding challenge. Then, compile a report that:

•     Explains the problem of protein folding and the core challenges

•     Outlines how AlphaFold overcame these challenges

•     Breaks down the computation methods / process

•     Uses pictorials, graphs, or other visuals to clarify the mechanism

You may use AI tools to aid your research, but do not copy text directly from them and acknowledge their use. Remember, AI outputs can sometimes be inaccurate, so please double-check any information you include.

Evaluation:

•   There’s no fixed page limit, but as a rough guideline, 3 - 4 pages should be sufficient if you effectively capture and condense the model’s complexity (which will be challenging!). However, evaluation will focus on the depth of your  insight  into  the  inner  workings  of  the  model(s)  and  your  ability  to explain or illustrate them in a meaningful, clear way.

o Background (~5 marks)

o Motivations for and behind computational approaches (~5 – 10 marks)

o Insight into AlphaFold (~25 – 20 marks) 



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图