代做Math3B Worksheet: Week 4

Worksheet: Week 4

Foundations

Definition (Limit, ε–δ)

Let f be defined on an open interval containing a (except possibly at a). We say


if and only if for every ε > 0 there exists a δ > 0 such that

0 < |x − a| < δ ⇒ |f(x) − L| < ε.

Definition (Continuity at a point)

A function f is continuous at a if


A function is continuous on an interval if it is continuous at every point of that interval. Let’s use the symbol ∀ to denote the phrase for all and ∃ to denote the phrase there exists. We can formulate the formal definition of continuous function on [a,b]:

f is continuous on the interval [a,b] ⇐⇒

∀c ∈ [a, b], ∀ε > 0, ∃δ > 0 such that ∀x ∈ [a, b], |x − c| < δ ⇒ |f(x) − f(c)| < ε

Toy example: show f(x) = x is continuous on [0, 1] (via ε–δ)

Fix a ∈ [0, 1]. We must show: for every ε > 0 there exists δ > 0 such that |x − a| < δ implies |f(x) − f(a)| < ε.

Here f(x) = x, so |f(x) − f(a)| = |x − a|. Choose δ = ε. Then whenever |x − a| < δ = ε we have

|f(x) − f(a)| = |x − a| < ε,

as required. Since a was arbitrary, f(x) = x is continuous on [0, 1].

Practice

1. Describe what is the meaning of x3 is continuous on the interval [0, 2] using the formal definition (i.e. Do not include the word limit or lim).

2. Let a and x be such that a ∈ [0, 2], x ∈ [0, 2]; Find the maximum value of x2 + ax + a2 (Ans: it is 12).

3. Use the factorization |(x3 − a3)| = |x − a| × |x2 + ax + a2| and part (2) to show that x3 is continuous on the interval [0, 2] (Notice that the quantity x2 + ax + a2 is positive, so you can remove the absolute value)

Remark: In general xn − an = (x − a)(xn−1 + axn−2 + a2xn−3 + ... + an−1). The simplest case is n = 2 → x2 − a2 = (x − a)(x + a) and n = 3 as in part (3).

True/False (T F Circle one and justify briefly.)

1. If f and g are continuous on [a, b], then


T F

2. If f and g are continuous on [a, b], then


T F

3. If f is continuous on [a, b], then


T F

4. If f is continuous on [a, b], then


T F

5. If f is continuous on [a, b] and f(x) ≥ 0, then


T F

6. 

T F

7. If f′ is continuous on [1, 3], then


T F

8. If v(t) is the velocity at time t of a particle moving along a line, then


is the distance traveled during a ≤ t ≤ b.

T F

9. 

T F

10. If f and g are differentiable and f(x) ≥ g(x) for a < x < b, then f′ (x) ≥ g′ (x) for a < x < b.

T F

11. If f and g are continuous and f(x) ≥ g(x) for a ≤ x ≤ b, then


T F

12. 

T F

13. All continuous functions have derivatives.

T F

14. All continuous functions have antiderivatives.

T F

15. 

T F

16. If 

dx = 0, then f(x) = 0 for 0 ≤ x ≤ 1.

T F

17. If f is continuous on [a, b], then


T F

18. 

dx represents the area under the curve y = x − x3 from 0 to 2.

T F

19. 

T F

20. If f has a discontinuity at 0, then 

f(x) dx does not exist.

T F





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图