代做QM1 2025 Lab Final代做迭代

QM1 2025 Lab Final

Fall 2025

Assignment policy: Students may discuss but must complete their work independently. Submit a single Excel file with clearly separated answer sheets for each section and back-end work. Clarity and presentation count! The final lab project is due Friday, Dec 5, 2025, 2PM PT.

Grading:

Section 1 – 10 points

Section 2 – 30 points

Section 3 – 30 points

Section 4 – 20 points

Overall Presentation – 10 points

Introduction

How we spend our time each day is fundamental to economic and social life. In this project, you will explore international time use data – how people allocate their day among work, leisure, personal care, and other activities – and analyze how these patterns relate to factors like gender and income. Time use is a key lens for understanding labor supply, work-life balance, and gender equality.  For instance, differences in paid work and unpaid household work between men and women can shed light on persistent gender roles, while the amount of leisure time people enjoy may correlate with a country’s level of economic development and well-being. You will  work with real data from the Organization for Economic Co-operation and Development (OECD) and the World Bank to gain insights into questions such as: How do people spend their daily time? Who enjoys the most leisure time, and how is it measured? Is there a link between a country’s income (GDP per capita) and how much its people work? And do gender gaps exist in time use? By the end of this project, you will have practiced essential data skills – including data cleaning, aggregation, merging datasets, creating informative charts – and drawn     meaningful interpretations about the interplay between time use, labor, leisure, and economic factors.

Datasets Provided

- OECD Time Use by Gender (oecd time use by gender.csv), as of July 29, 2024

- Time Use Diaries (Detailed) (time use diaries.xlsx), produced by ourworldindata.org

- GDP per Capita by Country (gdp per capita.csv), in constant 2015 US$

Use the provided datasets for all analysis. Document how you handle missing values, correct spelling issues, or merge datasets.

Data Sources

- OECD Time Use Database. Time spent in paid/unpaid work, personal care, and leisure by sex. Organisation for Economic Co-operation and Development. Retrieved from: https://www.oecd.org/en/data/datasets/time-use-database.html

- World Bank. GDP per capita (constant 2015 US$). World Development Indicators. Retrieved from: https://data.worldbank.org/indicator/NY.GDP.PCAP.KD

- Esteban Ortiz-Ospina, Bastian Herre, Tuna Acisu, Charlie Giattino, and Max Roser (2020). “Time Use.” OurWorldInData.org. Retrieved from: https://ourworldindata.org/time-use

1.  Data Exploration 一 Time Use in OECD Countries

1.1  Open the OECD time use by gender dataset (oecd time use by gender.csv).

1.2  Count the number of countries in this dataset.

1.3  Create a pivot table showing, at the country level, the share of total time spent on the five broad categories: Paid work or study, Unpaid work, Personal care, Leisure, and Other.

1.4  Briefly describe how people spend their time across OECD countries (1-2 sentences).

2.  Data Wrangling 一 Leisure Time & Its Composition

2.1  Create a new variable such that time use is measured in hours per day.

2.2  Compute the mean and median of total leisure time across all countries.

2.3  Plot a bar chart of total leisure time (in hours), with countries sorted from highest to lowest. Include the mean you compute in part 2.2 as an additional bar on the graph. Describe the chart in 1–2 sentences.

2.4  Use the time use diaries dataset (time use diaries.xlsx) to construct two new measures of leisure time:

Series 1: For each country, add the minutes spent on the following activities:

o Seeing friends

o Shopping

o Sports

o TV and Radio

o Attending events

o Eating and drinking

o Other leisure activities

Series 2: For each country, add the minutes spent on the following activities:

o Seeing friends

o Sports

o TV and Radio

o Attending events

o Other leisure activities

2.5  Compare the OECD measure of total leisure time with Series 1 and Series 2. You would need to merge the two datasets at  the country level to compare.

2.6  Which of the two new series is most closely aligned with the measure of total leisure time in the OECD time use dataset? Discuss whether “eating and drinking” and “shopping” should count as leisure. Justify your answer based on how time use surveys group activities into different categories.

3.  Data Analysis 一 Relationship between Work Hours and Income

3.1  Create two pivot tables showing the total time spent on paid work or study time for the top 5 and bottom 5 countries. Report time in hours per day.

3.2  Is there a difference in hours worked between these groups? Should we expect a difference? Why or why not?

3.3 Merge GDP per capita data (gdp per capita.csv) with time use data for OECD countries (oecd time use by gender.csv). Choose a GDP year (between 1960–2014) for analysis. The choice of GDP year should  be consistent with when the OECD data was updated and the availability of information for all countries. (Hint: Use VLOOKUP function in Excel with country codes to match.)

3.4  Create a graph showing the relationship between total paid work hours and the log of GDP per capita. Describe whether the relationship appears positive or negative.

3.5  Split countries into above- and below-median GDP per capita. Compute mean and standard deviation of total paid work time for both groups.

3.6  Conduct a difference in means test on paid work time across the two groups. State your hypothesis and interpret the p-value.

4.  Data Interpretation 一 Gender Gap in Time Use

4.1  Create a chart that compares the average time spent by men and women across the five broad time-use categories.

4.2  Do you notice gender gaps in time use? Write 1–2 sentences about what you learn from this graph. Briefly explain why a gender gap in time use might exist.

4.3  Create a table showing the ratio of time spent on unpaid work by men vs. women for each country.

4.4  Test whether the ratio is statistically less than 1 (i.e., whether women spend more time on unpaid work). Describe your hypothesis and run an appropriate statistical test.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图