代做EEEE4116 Advanced Control Coursework 1代写留学生Matlab程序

ASSESSMENT BRIEF

Electrical and Electronic Engineering

MODULE CODE

EEEE4116

MODULE TITLE

Advanced Control

ASSESSMENT NAME

Coursework 1

ASSESSMENT TYPE

Individual Report and Design Files

WEIGHT

30.0

ASSESSMENT TITLE

Modelling and Advanced Controller Design for a 2-Level GridFeeding Inverter

METHOD OF SUBMISSION/ DELIVERY

Moodle

ASSESSMENT DATE / SUBMISSION DEADLINE

Monday, 10th November 2025 3:00:00pm

FEEDBACK DUE

Monday, 1st December 2025

MODULE LEARNING OUTCOMES ASSESSED

1 Analyse scenarios to which control is to be applied and understand the nature of the system

2 Apply multivariable state space techniques to determine models of simple linear systems

3 Determine multivariable state space linear models of non-linear systems about an equilibrium point using the small signal analysis

4 Describe and apply multivariable state feedback control techniques to the design of linear continuous control systems




5 Describe and apply multivariable state feedback control techniques to the design of linear discrete control systems

6 Analyse the performance of multivariable state feedback control and its impact on the controlled systems by means of CAD tools

7 Assess theoretical techniques to perform. multivariable state feedback control design using CAD tools

Advanced Control (EEEE4116)

Coursework 1




Modelling and Advanced Controller Design for a 2-Level Grid-Feeding Inverter

In this assignment you will bring together your skills of state-space equation development and controller design to control a grid-tied 2-Level Converter. The design will make use of transforming the 3-phase

behaviour of this converter into the dq frame and use the dq equivalent circuit to develop controls. If you have not yet read the coursework summary, it is highly recommended you read this prior to get the

understanding of what dq transforms are and why we are developing a control system in this way.

 

Figure 1- Notional System Diagram: DC Source interfaced with 3-phase 2-Level Inverter interfaced to the grid.

The system under investigation is a very common application when trying to link renewable energy sources such as solar panels, or energy storage systems to interface them to the national grid, or even microgrid

applications where small remote communities rely on generating their own power.

We are converting DC power into 3-phase AC power to connect to the national grid. The parameters which will be used in the design is as follows:

 

Vdc

DC Supply Voltage

= 400V

Vgrid

Grid RMS Voltage

= 230Vrms

L

Output Filter Inductance

= 470mH

R

Intrinsic Filter Resistance

= 2Ω

C

Output Filter Capacitance

= 33uF

ω

Grid Frequency (rads-1)

= 100π rads-1

fs

Switching Frequency

= 20kHz

 


 

Exercise 1 – System Modelling

As per the coursework summary, we wish to develop our control strategy using the dq equivalent model. It can be shown in [ X ] that an equivalent 3-phase inverter can be modelled using the following circuits when observing converter dynamics in the dq domain:

Figure 2- 3-Phase Inverter dq equivalent average model.

Where:

•    md: d-axis modulation index.

•    mq: q-axis modulation index.

•    ω: frequency of phase voltages (rads-1)

•    Vcd / Vcq: d-axis and q-axis voltage respectively across capacitor

•    Iid / Iiq: d-axis and q-axis input current respectively from inverter

•    Icd / Icq: d-axis current respectively flowing into capacitor.

•    Iad / Iaq: d-axis and q-axis output currents after filter.

•     represents a virtual voltage source in the system (due to changing currents in inductor)

•     represents a virtual current source in the system (due to changing voltages in capacitor) Hint: Note the directions of the virtual voltage and current sources. Vital to this exercise.

Using Kirchhoff’s current and voltage laws on the two circuits shown in Figure 2, develop state-equations for d and q axis voltage and currents.

In our system, we will treat the modulation indexes as inputs to our system. Using your state equations, go on to show that the state-space equation defining the model can be shown to be as:

 


 

As you may have recognised, although Iad and Iaq are variables in our dq model, this variable is not included within the state-equation. Similar could be said about Icd, and Icq. Explain why these terms are not present in the final

state-space equation.

In addition, what sources of error do you think could be attributed in the model, and what effect do you think this could have on the system?

 

 

Exercise 2 – Transfer Function Depiction

Whilst state-space can describe the system with differential equations, it still does not fully replace the

transfer function for model development. In fact, often a transfer function block diagram is first developed to visualize the behaviours of a system and help formulate state-space models.

In the first part of this exercise, analyse Fig 2 and construct a transfer block diagram for the above model. A template has been provided below to assist you construct the block diagram. Explain in your report how

you derived the terms in the block diagram.

Figure 3: Structure of the block diagram for the dq equivalent model. Fill in the blanks and '?' to complete the model.

The boxes with ‘?’ should be transfer functions in Laplace Form. The dashed boxes are interconnections between terms to form. the mathematical model of the system.

After constructing the model, in MATLAB enter your state-space system using the ss(A,B,C,D) command.

Compare the eigenvalues of the state-space representation to that of the transfer functions in Fig 3, and can you explain why there is a discrepancy between them?

As shown through the state-space equations, and the transfer function block diagram, the two circuits

exhibit cross-coupling (sharing of terms in each other’s models) . Why is cross coupling an issue in the

controller design, and how could you augment the transfer block diagram to compensate for cross-coupling affects?


 

Exercise 3 – Control Philosophy

We have now derived the state-space equations for our inverter, and modelled the transfer function block diagram, all within the dq domain. We will now start designing the controller for our inverter.

We want our converter to be able to respond quickly to any changes in demand from the grid. Therefore, a settling time to maintain the peak voltage will be set to 200ms. This in turn will influence the phase change of the inverter similarly.

Decide with explanation the choice of poles being used in the pole-placement algorithm and create

feedback controller K for our system. You can augment the system by feeding the output of the controller directly into the B Matrix as follows:

 

Figure 4: Basic state-space block diagram to analyse performance of designed controller.

In default condition, you may see the output not change at all. What can you change in the above model to evaluate the closed loop performance of the system.

One you can see the dynamics of the outputs, evaluate the response, and reflect if the system is behaving according to your design.

You will realise from the system should operate much better than that of open loop, however there is

currently no ability to attain our desired voltages in this control scheme as we have no references for which the controller can actuate upon.  If you analyse the output of your controller ‘K’ when using the block

diagram in Fig 4, what are the outputs of K tending to, and can you explain why the system is tending to this value.

To integrate references into our model, we must introduce integral states. Identify which states you'll

reference for grid applications. Discuss in your report how these integral states are added to the state-

space block diagram, and how they help achieve zero steady state error. Given the expanded state system, reperform. the pole-placement with new poles, justifying your selection while ensuring desired converter performance.

In the report, discuss the adaptation to the state-space equation to incorporate integral states, the need for them, the design of the new poles for the system. Show, with explanations how the state-space block

diagram is augmented for the inclusion of integral states. Analyse the performance of the system, especially any foreseeable issues you can observe with the system? Prove to the reader that even with the

adaptation, the system operates still within desired specification.


 

Exercise 4 – Integrator Preloading and Integrator Anti- windup Implementations

Integrator terms are very influential regarding system performance. It’s not simply that having them in our system allows our system to achieve zero steady state error but can also heavily influence the start-up

performance of any control system, and the step response of a system when there are physics limitations.

Using the working closed loop model with integral states, place a scope on each of the integrator outputs (that for the states as well as integral states) and the system outputs.

 

Figure 5: Placement of Scope on Output of integrator block

What do you observe in the relationship between the integrator outputs and the system outputs?

A solution to the issues observed is to do something called Integrator Pre-Loading. You may have in the past used the PI block within Simulink and seen the following option to initialize the integrator values but may

not have realised the use in this up until this exercise.

 

Figure 6: Initialization Settings within the PI Block in Simulink

You should hopefully recognise that these integrator values reach a steady value when all the system derivatives equate to zero. Note these values down, and inside your integrator block, initialise the

integrator to these values.

In doing this, what has changed in the system? Can you explain with reference to the state-space system why the system now behaves the way it does? What assumptions are made performing this change, and can would anything need to be considered when apply on physical hardware?

Your system should be working incredibly well, in comparison to Exercise 3.  However, there is still one issue that still needs to be resolved regarding the integrator. You probably will not see the issue if you have

incorporated the integrator pre-loading successfully, so we need to do a step test to highlight this issue.

The following would typically be quite irregular for a grid tied inverter, but we are doing this to push the

system into new behaviour. Use a ‘Step’ block on one of your references and apply a sizeable step input at


 

half your simulation time (enough time to allow the system to stabilize before the step reference is

applied). What can you observe happen with the system inputs, and why is this an issue? (If you don’t see any issues, apply larger steps, and analyse all states and inputs until a possible issue may arise)

We need to limit the effects of this issue, which raises the issue if integrator anti-windup. If a controller has an integrator, integrator anti-windup means that the integrator is turned off, when the when the system

hits limit values (or “Saturates”). Can you explain why we would want to turn off the integrator when our system reaches these conditions?

In Figure 7 is the typical structure of an integrator anti-windup. Analyse the structure, adapt your system to incorporate the Anti-windup scheme below. Clearly describe your methodology and show you understand what is going on when you incorporate into your system.

 

Figure 7: Integrator Anti-windup Structure

If in your system for example, you want to limit u to ±1, the look-up table can be as follows:

 

Input

-2

-1.01

-1

0

1

1.01

2

Output

0

0

1

1

1

0

0

 


 

Exercise 5 – Real Model Testing

The final part to this coursework is to apply our controller model to an actual circuit to show what has been designed would work. Here it is not expected that you build up a whole inverter simulation, and you will be provided with the backbone of the inverter model as shown in Fig 8.

To the simulation, you may choose two pieces of software, MATLAB Simulink, or PLECS. Please ensure you download the respective file for the application you wish to use. PLECS simulates power systems faster, but MATLAB is easier to implement the observer design through script. Both pieces of software will produce

the same results for the same system.

 

Figure 8: Simulink Model of Three-Phase Inverter which can be downloaded on Moodle.

 

 

You task here is to adapt the model to incorporate the controller, into the switching model. One

implemented, stress test your controller, note any differences between the average model you made for  Exercises 1-4, and try and explain why such differences are observed. You may notice that Iiq is a non-zero value when the system reaches steady state. Can you explain why Iiq is the value to which it settles at?

Stress testing can involve load testing using the connected resistors and apply the switch at a given moment in time. Can change the reference values.

What happens to the system is you set the resistors to be a very low value (approx. 100Ω)? Can you explain why the converter behaves in this way?


 

Exercise 6 – Optimal Controllers Development

The methods of controller design covered in this coursework has been a very popular industrial method of controller design for many years, and you have in fact used similar techniques when designing PI controllers in your previous studies. However, as computers have become faster, and algorithms refined, techniques of controller optimisation have been rapidly employed in industrial applications.

In this exercise, we will briefly look at the Linear Quadratic Regulator (LQR). The mathematics of the control is relatively complex and out of the scope for this module, however it is important to understand how you  can use software tools such as MATLAB to develop optimal controllers for state-space systems.

What is LQR Control?

The Linear Quadratic Regulator is an Optimal Control method, which looks at how to drive a system from its current states to the required reference states at a minimal cost, or in other words, to achieve our system   references using the least amount of energy.

 


To achieve this, the following cost function is evaluated:

min J (u) = ∫ (xT Qx + uT Ru) 0

Where the feedback control law, as normal is defined by Eq. 3: u = -Kx


 

 

 

Eq. 2

 

 

 

 

Eq. 3


Therefore, the algorithm looks for a value for a controller K, which not only makes the closed loop system stable, but minimizes the overall control effort J.

The way we can tune this system is by selection of the Q and R matrices. With reference to Eq. 2 you can see that the Q matrix weights the states ‘x’, and the R matrix weights the inputs ‘u’.

The Q and R matrices are each diagonal matrices, whose dimensions are equivalent to the number of

states, and inputs respectively. For example, for our system we would have the following matrices, if Q and R are set to unity.

 


Q6×6 = [ 1   ⋱   1 丨 ,R2×2 = [0(1)

 


1(0)]


 

Eq. 4


Each diagonal element in the Q matrix corresponds to the state of that row. For example, the non-zero value on the 2nd row of Q, associates a weighting to the 2nd states of x, in this case Iiq.

Likewise, for R, the non-zero value on the 1st  row of R corresponds to the 1st  input, in this case md.

Tuning the controller can be done by understanding these rules:

•    Q Matrix Tuning

o The smaller the weighting in given states, the more controller effort provided to this state. In other words, the smaller the value, the faster the bandwidth for that given state.

•    R Matrix Tuning

o The larger the weighting given to the inputs, the more restricted the respective input.

    So, a smaller value for R, the faster an input can react to system changes.

    A larger value for R, the more restricted, and thus slower an input would react.


 

For this exercise, you are going to develop an LQR controller, making use of the lqr() function within MATLAB. The control architecture will not need any change to that from Exercise 4 & 5.

Read through the documentation of the lqr() function in MATLAB and ensure you know how to use the function.

In your report, describe the process of designing the LQR controller, noting that we still desire our system to stabilise at our references within 200ms. Show a good design philosophy and describe the process in which you designed the controller to meet the specification. You may also want to think about the following

questions in your report when writing about your design:

What performance improvement can you observe between the controller designed using LQR and pole- placement in our closed loop system?

What are the fundamental differences between LQR and other control techniques such as pole-placement, and what advantages can use LQR optimisation, and which scenarios might it be a preferable method of

design?

What are the trade-offs involved when choosing the weightings in Q and R? Can you show the impact of changing each of the matrices and relate it back to theory?

Given the name of this controller is a Linear Quadratic Regulator, do you believe these controllers would work well in non-linear environment, and if not, are there some work arounds you could propose?


 

Writing your report

The style. of the report should be a technical report. You may use the headings for each exercise to break

down the subheadings in your report, but the style of the report you submit for your assignment should be in the style as if you were creating a professional document colleagues may look to understand your design.

Do not write your report as if answering an exam, i.e Ex5 a) Ex5 b). Doing this you will  lose marks in presentation for your report.

Each exercise has a few questions which you are expected to answer, however if there are other elements of the design which you wish to discuss and analyse further based on your studies on the course or extra reading, you are highly encouraged to write up on this. This is how you will achieve the top marks in the  rubric.

Coursework Support Sessions

Each week there is a coursework support session on teams. This is your opportunity to ask any questions relating to the coursework, from use of MATLAB, Simulink, or general theory on controller design. You’re highly encouraged to attend each of the seminars each week and come prepared with questions.

The support sessions take the following structure each week:

•    First 10-15 minutes will involve a small presentation or demonstration on different aspects of the controller design, or small software tutorial.

•    Remaining 45 minutes will be a group Q&A. Please do have questions ready as this part of the session is directed by you.

•    If there is time remaining 1-to-1 help sessions can take place. It will be first come first serve. If I am unable to get to people requested, I will attempt to meet you another time in the week when I am free.

For any coursework questions, please contact Dr. David Dewar ([email protected]).

Submission Requirements:

This report should be no longer than 20 pages (title pages and contents page are not included)

Please do not include anything which might identify you as the writer of the report. All reports are to be marked anonymously.

Therefore, please DO NOT INCLUDE any names, student ID’s or emails in the document.








热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图