代做ENGF0001 – INTEGRATED ENGINEERING代写留学生Matlab程序

ENGF0001 – INTEGRATED ENGINEERING

SUBTASK GUIDANCE DOCUMENT

SUBTASK PLANNING – IMPEDANCE PROBE

INTRODUCTION

Measuring the growth of cells is an important component in the successful laboratory experiment or manufacturing process. Batch cell growth can be monitored and divided into three discrete phases. These are the lag phase, exponential phase and stationary phase.

During lag phase very little growth is expected. In the second phase, exponential growth, the cells achieve their maximum growth rate. However, this growth will eventually come to a stop as the media runs out of carbon source and other essential growth factors There is a fourth  stage, which can occur if the cells are left in stationary phase too long, and this is the death phase. In this phase the cells will begin to break down and die. It is optimal to harvest the cells just as the stationary phase starts, but the time at which this occurs varies between batches.

Cell growth is ideally measured by an automated method, which can distinguish between live and dead cells, as well as determining the mass of biological material present.

You have been tasked with assembling and calibrating an impedance probe for monitoring cell growth.

THEORY

Living cells can be modelled as a resister (Ri) and capacitor (C) in series, both in parallel with a 2nd  resistor (Re)(Figure 1).

In this simplified model, Re  can be considered to describe the media the cells are suspended in, C is related to the cell membranes composition and cell size, and Ri  related to the impedance of the cells. Changes in any of these, or their proportions will also affect the impedance. The impedance is frequency dependant and varies with cell density, under controlled conditions. Impedance (Z) is a vector, it’s modulus (|Z|) is equivalent to resistance.

Figure 1 Living cells modelled as simple circuit

Biological impedance is typically determined by applying an alternating current of fixed amplitude to a pair of electrodes (drive) and measuring the resultant voltage difference across a pair of electrodes. One or both electrodes may be shared between the drive and measurement circuits and one or more frequencies of injected current may be used.

Figure 2 Diagram representation converting voltage supply to current supply

To change a voltage source (e.g. from myDAC) to a current source, put a large resistor (R1) in series with the load, i.e. the yeast solution. For this circuit the choice or R1 has been determined for you. Figure 2 depicts this equivalency.

The printed circuit board (PCB) provided to you contains a simple differential amplifier (figure 3a) along with a 50Hz Twin T notch filter (figure 4b). A simple differential amplifier has a gain =R3/R2. Resistances (i.e. the ‘load’) in series with each R2 will alter the gain unless load<

Figure 3 a: simple amplifier; b: twin T notch filter

If Current (I) is constant, and the amplifier within its optimal operating range, |Z| will be proportional to the amplitude of the output voltage (V) of the amplifier (Ohm’s law).

DESIGN METHODOLOGY

You will be required to assemble and calibrate your own impedance probe from the materials available, and use it for monitoring cell growth during the 24h run. Design decisions will be required with respect to the gain, frequency and electrode arrangement of the probe, taking into account the dimensions of the prototype rector.  You will calibrate the probe using the 50g/l yeast solution provided, and the following serial dilutions of this (20g/l, 8g/l, 4g/l, 2g/l, 1g/l).

EQUIPMENT AND MATERIALS AVAILABLE

●    Enclosed PCB of combined amplification, filter and drive circuits

●    myDAQ & accessories, (requires Windows PC with NI Elvis software)

●    Connecting wire (6 colours) & cutters/strippers

●    Plastic cup

●    Electrode holder set (top ring and posts)

●    Phosphate Buffer Solution (PBS) or saline of equivalent impedance.

●    Activated yeast (Saccharomyces cerevisiae) solution (20g/l, 50g/l).

DELIVERABLES

●    Amplitude(V) vs. frequency plot for a)  PBS and b) the 20g/l yeast solution provided

●    Impedance probe operating parameters (electrode locations, constant current source: input voltage, frequency/frequencies, …)

●    Calibration curve of output amplitude(Vout) vs. yeast concentration

●    Brief justification for the final design/settings

●     A plot from the 24hr bioreactor run showing yeast growth in the bioreactor over time

TIPS

●    Start with a quick scan of the measurement range, for all parameters, to give you a

rough idea of your expected results, record a qualitative description of the trends and other observations, and make a first estimate of the probe operating parameters.

●    Change only one variable at a time

●    Consistency in electrode arrangement is critical to consistent readings

●    Use the same electrode configuration, spacing and liquid height for all ‘deliverables’

SCALE-UP CONSIDERATIONS

By the end of this subtask you will have gone through the methodology required to characterise impedance, as a function of cell growth, within the bioreactor. However, this is for a virtual small-scale model. Speculate how impedance might change in a larger (e.g. 1,000 litre) reactor. How might your design change?

REFERENCES

Brown, B. H., R. H. Smallwood, D. C. Barber, P. V. Lawford and D. R. Hose (1999). Medical Physics and Biomedical Engineering. London, Institute of Physics Publishing

Soley, A., M. Lecina, X. Gámez, J. J. Cairó, P. Riu, X. Rosell, R. Bragós and F. Gòdia (2005). "On-line monitoring of yeast cell growth by impedance spectroscopy." Journal of Biotechnology 118(4): 398-405.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图