代写Birthday Paradox Attack调试Python程序

Question 1 – The Birthday Paradox Attack [50%]

This exercise illustrates the birthday paradox in the context of hash collisions, using a simple toy “hash” function based on bitwise XOR. You will write a Python program to demonstrate how collisions can occur much more easily than intuition may suggest.

Instructions

Write a Python program that performs the following steps:

1.   Generate XOR “hashes” for prime sets.

o  Randomly generate 16 sets of three distinct prime numbers, all less than 256 (28).

o  Compute the hash of each set by taking the bitwise XOR of the three integers:

Store these 16 hash values as your reference set.

2.   Search for a matching composite set.

o  Repeatedly generate random sets of three distinct composite numbers less than 256.

o  Compute the XOR hash for each composite set and compare it to the 16 prime-set hashes in your reference set.

o  Stop as soon as you find a composite set whose hash matches one of the prime-set hashes in your reference set.

3.   Output and submission format.

o  Your submitted Python file must include, as commented output at the end of the file:

The 16 prime sets and their XOR hashes.

The matching composite set (if found) and its hash.

The total number of composite sets tested before a match occurred.

The random seed used (e.g., random.seed(2025)).

o  If no match was found within a reasonable number of attempts, state that clearly.

o  Do not submit screenshots; include all output and explanations as comments within your .py file.

4.   Conceptual check.

o  Briefly note in comments how this toy example relates to the birthday paradox; that is, why collisions become likely once the number of

generated hashes approaches roughly the square root of the hash space size.

Additional Requirements

•     Each set” must be an unordered collection of three distinct numbers (no

repetitions). For example, {5, 11, 5} is invalid, and  {2, 7, 19} is the same as {19, 2, 7}.

•     Use a fixed random seed to ensure reproducibility.

•     The XOR hash should be computed directly using Python’s bitwise XOR operator (^).

•     Keep your code well commented and clear.

Expected Results

Because XOR outputs very small integer values (only a few bits when numbers < 28), collisions should appear quickly—often after testing only a few dozen composite sets.

This models the birthday paradox: the probability of two values colliding rises sharply once you generate roughly √N distinct hashes, where Nis the number of possible outputs.

Question 2 – Attempting a Birthday Attack on SHA-256 [50%]

This question extends Question 1 (The Birthday Paradox Attack) by replacing the simple XOR operation with a cryptographically secure hash function (SHA-256). The goal is to empirically  show  how  unlikely  it  is  to  find  a  hash  collision  when  using  a  modern cryptographic hash function.

Instructions

Write  a  Python  program  using  the  cryptography library  (see  the  documentation  at https://cryptography.io/en/latest/hazmat/primitives/cryptographic-hashes.html)            that performs the following experiment:

1.   Generate SHA-256 digests of prime sets.

o  Randomly generate 16 sets of three distinct prime numbers, all less than 256.

o  For each set {p1, p2, p3}, compute the SHA-256 digest of the concatenation of their ASCII decimal representations (e.g., b"251", b"157", b"191").

o  Store these 16 hash values as your reference digests.

2.   Generate SHA-256 digests of composite sets.

o  Generate 1,000 sets of three distinct composite numbers, all less than 256.

o  Compute their SHA-256 digests in exactly the same format as in Step 1.

o  For each composite digest, check whether it matches any of the 16 prime digests. Stop early if a collision is found.

3.   Output and submission format.

o  Your  submitted Python code must include the following as commented output at the end of the file:

The 16 prime sets of your reference set (and their corresponding digests).

Up to 10 composite attempts (with their sets and digests).

The final result, clearly stating whether a collision was found or not.

The fixed random seed used (e.g., random.seed(2025)).

o  Do  not submit screenshots. All results and explanations must appear as comments within your code file.

4.   Explanation (as comments in the code).

o  After your code, include a short 1–3 paragraph explanation (as a comment block) describing:

Why a collision is extremely unlikely with SHA-256.

How this relates to the birthday paradox, specifically that a 256-bit hash requires roughly 2128  attempts on average to find a collision.

Why your  1,000-trial  experiment  will  almost  certainly  yield  no matches.

Additional Requirements

•     Treat each set as an unordered collection of distinct elements (no repetitions, and order does not matter). For example,  {5, 11, 5} is invalid, and {2, 41, 227} is the same as {41, 227, 2}.

•     Use a fixed random seed so results are reproducible.

•     Verify that all composite numbers are indeed non-prime and greater than 1.

•     To avoid accidental false collisions:

o  Do not use bytes(n) directly, as it produces a sequence of null bytes (\x00) that can unintentionally overlap between inputs.

o  Avoid ambiguous string concatenations such as "2" + "41" + "227" and "24" + "12" + "27", which both yield "241227".

o  Instead,      include      delimiters      (e.g.,      b':')      or      use      separate digest.update(b"...") calls.

Expected Results

You          are          not           expected          to          find           a          real           collision. Even if you computed all possible sets of three composite numbers  less than  256,  a  true  collision with  SHA-256  would  still  be  astronomically unlikely, requiring roughly 2128 trials on average. For perspective, generating 1.39 × 106 SHA-256 hashes takes about 40 seconds on the instructor’s laptop, but 2128 hashes would take ≈ 5.9 × 1025 years. This is far longer than the expected lifetime of our galaxy, the Milky Way.

If, after verifying your code, you genuinely find a collision, document it carefully in your output comments, and you will receive full marks for this assignment regardless of other results.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图