代做EE5606 Artificial Intelligence for Antennas in Wireless Communication代写数据结构语言程序

Mini Project Worksheet: Dipole Antenna Array Optimization

Course: EE5606 Artificial Intelligence for Antennas in Wireless Communication

Report Submission Deadline: Week 12 (at the commencement of the lecture)

Project Background

Design a linear half-wave dipole antenna array that has a main beam direction of x as shown in Fig. 1. Traditional full-wave simulations (e.g., HFSS, CST) are computationally expensive. For simplicity, no full-wave simulations are required in this project. In this project, you will use an array factor formula to generate training data, train a fully-connected neural network (FCNN) to obtain a surrogate model, and then use an optimization algorithm to find an optimal array configuration.

Part I: Data Generation and FCNN Training



Fig. 1


Design Goal:

Generate a dataset using the array factor formula for a linear half-wave dipole antenna array, and train a FCNN to obtain a surrogate model that replaces the array factor formula.

Parameters:

1.   Operating frequency: f = 2.4 GHz

2.   Wavelength: λ = c/f

3.   The radius of each dipole element is b = 0.5 mm

4.  Number of elements: N = 32  for the entire project.

Design Variables:

1.   Element spacing d (in terms of λ)

2.   Progressive phase shift α (in radians) between elements


Electric Field Vector:

The electric field vector generated by the antenna array at a point in the far field.

where k = 2π/λ is the wavenumber in vacuum. For a half-wave dipole antenna, the element pattern he(θ) is given by:

where:

1.   the term accounts for the spherical wave propagation, which can be regarded as a constant in this project.

2.   he (θ) characterizes the radiation pattern of a single half-wave dipole element.


Analytical Formula – Array Factor:

The array factor for a linear array along the z-axis is given by:

where:

1.   an  = 1 (i.e., assumed uniform excitation),

2.  X is the angle from the x-axis, where cos X = sinθ cosφ .

Task 1:

Train a FCNN to predict the value of |E| for a given data input of (d, α , θ, φ), with d ∈ [0.3λ,0.8λ] , α ∈ [-π, π] , θ ∈ [0°, 180°] ,  and φ ∈ [0°, 180°] .  This  FCNN  (surrogate model) is used to replace the array factor formula.

Task 2:

By using the FCNN (surrogate model) and an optimization algorithm (Genetic Algorithm or PSO), find the optimized (d, α) that gives the maximum |E| at (θ = 59.8o, φ = 30.3o).



Submission Requirements


Upload your ZIP file to “Assignments” in Canvas. The ZIP file should contain:


1.  Code: Provide  comprehensive  comments  for  each part  (Data  generation,  FCNN  training, Optimization algorithm).

2. Brief Report: including methodology, results (e.g., training and validation errors of FCNN, convergence curve of optimization algorithm), discussion, and conclusion (no more than 4 pages, single line spacing, New Times Romance, font 12, 1-inch margin from top, bottom, left, and right).

3. Demo video: including the processes ofFCNN training and optimization.

4. Note: In your presentation slides, use diagrams, plots, figures, etc. as far as possible. Avoid long paragraphs and keep the text as concise as possible.

5. Presentation: (10 min + 2 min Q&A)


Suggestion:

(1) Use flowcharts to explain your algorithm workflows.

(2) Include figures to visualize algorithm performance (e.g., convergence curves, prediction error). Grading Criteria


Category

Weighting

Code Quality

25%

Readability, modularity, and documentation

Algorithm Implementation

25%

Correctness of optimization and FCNN

Report

25%

Organization, conciseness, and analysis

Presentation

25%

Clarity and time management




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图