代写Qbus6860 Group Assignment代做留学生SQL语言程序

Qbus6860 Group Assignment

Introduction

The  Consumer  Price  Index  (CPI)  and  Retail  Turnover  (RT)  are  two  critical  economic indicators. As a consulting firm, we leverage these two key economic indicators to offer valuable insights to enterprises. These indicators serve as essential tools for understanding customer  consumption  behavior,  assessing  industry  conditions,  and  exploring  broader economic trends. That information can assist companies' decision-making and help them to adapt to the ever-changing economic landscape.

In  this  report,  we  focus  on  CPI  and  RT  data  from  different  industries  and  states within Australia.  Initially,  we  will  explore  the  relationship  between  inflation  rate  and  turnover. Additionally,  the  regional  and  industry-specific  analysis  offers  a  perspective  on  how economic  conditions  and  consumer  behavior  vary  across  the  country.  However,  the COVID-19  pandemic  has  introduced  unique  challenges,  profoundly  impacting  economic conditions.  The  relationship  between  inflation  rate  and  retailing  turnover  in  different industries  and  states  under  the  COVID-19  period  is  a  complex interplay  of factors. The pandemic has led to significant shifts in consumer demand, supply chain disruptions, and changes  in  consumption  patterns.  Indeed,  these  changes  have  exhibited  distinct  patterns across various industries and states. In this report, we have identified and analyzed these variations.  Of  particular  interest  is  the  distinctive  performance  of the  food  industry  in comparison to other sectors during both pandemic and non-pandemic periods. That makes us conduct further in-depth analysis.

Data processing

Our data downloads two datasets from data.gov.au, the Retail Turnover and Consumer Price Index (CPI) datasets. These datasets cover relevant information from 2010 to 2023. We noted that 317 turnover values were missing in the retail turnover data, while there were no missing core index values in the CPI data. We did not take immediate action on the missing data, and in our analysis, we were concerned with exploring the relationship between retail sales and the CPI. We decided first to merge the two data to facilitate the analysis of key business issues.

Firstly, we examined the structure of the two datasets and found that the two datasets used different industry classification criteria. To ensure comparability and consistency, we created an  industry  code  transformation  mapping  so  that  the  industry  codes  in  the  CPI  dataset corresponded to those in the retail sales dataset. It is worth noting that there is no appropriate classification  for  Cafes,  restaurants  and  takeaway  food  services  in  the CPI data, and we decided to merge this classification into the food retailing. Secondly, we noticed missing or inconsistent   values   in   the   CPI   data   during   the   merge.   Therefore,   we   created   the delete_repeat_data function, which not only removes records with empty CPI values but also calculates  the  average  of the  data  over  the  same  period,  industry,  and  region  by  group aggregation. Finally, we filtered the variables and renamed the two datasets to ensure the column names were consistent when merging. Once the data were prepared, we integrated the retail  sales  and  CPI datasets into  a new data frame, merge_data, by connecting the keys standard to both data - time period, industry, and region. We deal with the missing value by filling the mean, because directly dropping null and filling forward will cause bias, compared with the original data set. Ultimately, we computed the percentage change in retail sales versus the CPI on the merged dataset. This step lays the foundation for subsequent insights into retail turnover and CPI changes over time across industries and regions.

Analysis

1.0 Overview of relationship between retail turnover and inflation

To analyze the relationship between retail turnover and inflation in Australia, we first created a line plot to examine the trends of these two variables over time. We excluded Australia from regions, then grouped the data by time period and calculated mean values of retail turnover and inflation rate for each time period. Due to the extreme value of inflation rate at the 2020-Q3 time point, we chose to drop the data for this point to better visualize the graph. This operation does not affect our overall trend analysis.

Retail turnover displays an overall pattern of fluctuating growth. Over the course of 13 years, it has risen from an initial value of about 1000 million AUD to 1700 million AUD. For the inflation  rate,  it  exhibits  relatively  significant  fluctuations,  with  most  of the  data  falling within the range of 0 to 0.6. The upward trend in inflation rate values is continuous in most time periods, although there may be slight fluctuations within certain quarters. This suggests that  the  overall  economy  experiences  a  relatively  sustained  increase  in  prices.  Notably, starting from the beginning of 2020, both retail turnover and inflation rate have experienced significant fluctuations. They both experienced a decline, especially with CPI witnessing a significant decrease. These fluctuations may be attributed to the impact of the COVID-19 pandemic and related economic factors. However, in this graph, apart from the overall trend, we cannot clearly discern the correlation between the inflation rate and retail turnover, and further analysis is needed.

1.1 The lagged cross-correlation between retail turnover and inflation

Next, analyze the lagged cross-correlation between retail turnover and inflation. Since the dataset covers a period from the first quarter of 2010 to the second quarter of 2023, totaling 13 years or 52 quarters, we chose to investigate the association between these two variables over the past 15 quarters and the next 15 quarters, which is a relatively long span. We used a loop  to  iterate  through  each  lag  value.  Then  we  calculated  the  correlation  between  the percentage change of turnover and the lagged inflation.

The  direction  and  strength  of the  correlation  values  for  both  positive  and  negative  lags provide valuable insights into the connection between retail turnover and inflation. When the lag is set to 0, it means that retail turnover and inflation change simultaneously within the same quarter. A positive correlation suggests a positive relationship between them and vice versa. The magnitude of the correlation coefficient indicates the strength of the relationship.

Larger positive or negative values indicate a stronger relationship. Negative lags suggest that the inflation rate leads to retail turnover, while positive lags suggest the opposite.

According to appendix 1, it shows that at  Lag 0, a correlation of -0.0711 indicates a negative relationship between inflation rate and retail turnover, implying that they exhibit opposite trends during the same period. However, the magnitude of this correlation is not substantial. It's important to note that this negative correlation is observed only at lag 0, and it may be influenced  by  seasonality  or  other  factors.  Moreover, the data utilized in this  analysis is recorded on a quarterly basis, potentially obscuring short-term fluctuations, and dynamics. Thus, the actual relationship between inflation rate and retail turnover may vary over time.

At  lag  -6,  the  correlation  value  is  0.0478.  It  is  important  to  note  that  this  correlation coefficient reaches its peak within the overall data. This observation indicates that during the period corresponding to lag -6, there is a positive correlation between inflation rate and retail turnover. Furthermore, it suggests that inflation rate leads retail turnover within the earlier six quarters,  meaning  that  changes  in  inflation  six  quarters  ahead  of retail  turnover  have  a positive influence on future retail turnover. At other lag periods, the magnitude of correlation coefficient  values  are  relatively  small,  indicating  a  relatively  weak  negative  correlation between inflation and retail turnover. In conclusion, based on the chart, we can infer that changes in inflation occurring six quarters prior to retail turnover have a positive impact on future retail turnover.

2.0 The relationship between Mean Turnover and Different Regions

To   compare   the   mean   revenue generated   over   time   in   various regions,  this  report  utilizes  a  bar chart.   The   x-axis   represents   the different  regions,  while  the  y-axis represents the mean turnover values (million  AUD).  On  average  over time, the New South Wales (NSW) are  the  highest  retailing  turnover. The possible reason for this is NSW has  the  highest  population  of  any state   in   Australia,   making   it   a significant       consumer       market (Channels, 2020). Moreover, NSW is Australia's largest state economy, and its economic diversity  and  emphasis  on  service-driven  industries  contribute  to the high retail turnover (Channels, 2020).

2.1 The relationship between Inflation rate and Industry over time

The CPI provides insights into changes over time, and retail turnover refers to the total sales or revenue generated by a retail business over a specific period. Thus, this report can utilize a line  chart  to  depict  the  time   series  changes  in  different  industries,  allowing  for  a comprehensive view of how various sectors change over time.

In the inflation rate chart, where the x-axis represents quarterly time periods and the y-axis represents  inflation  rate,  with  different  colors  representing  various  industries.  Notably, compared with other industries, the department store industry between 2013 Q1 to 2021 Q1 has consistently maintained a slightly higher inflation rate. Despite fluctuations in the data, the overall average inflation rate for department stores remains slightly higher than that of other industries in that time period. This situation can be attributed to the classification of alcohol and tobacco belonging to the department store category.

The  tobacco  tax  in  Australia  is  among  the  highest  in  the  world,  reaching  65%  in  2020 (Nicholas & Kelly, 2023). This high tax rate plays a significant role in driving up the cost of tobacco products and likely contributed to the increase in the CPI within the department store industry   and   subsequently   affecting   the   inflation   rate.   Furthermore,   to   mitigate alcohol-related  harms, the Australian government imposes taxes on alcohol  (Alcohol and Drug  Foundation:  Position  Paper  Alcohol  Taxation,  2023).  These  taxes  are  adjusted  for inflation every six months in line with the CPI. That is probably one of the reasons for six months of lagged cross-correlation between retail turnover and inflation, which is mentioned in part one. This demonstrates the changes in taxation policies, especially in industries like alcohol  and  tobacco,  can  directly  impact  on  inflation  rate  trends,  and then influence the broader economy. After 2021 Q1, the inflation rate data begin to show different fluctuations, which can be attributed to the impact of the COVID-19 pandemic.

2.2 The relationship between Retailing Turnover and Industry over time

In the RT chart, where the x-axis represents quarterly time periods and the y-axis represents RT  values  (million  AUD),  with  different  colors  indicating  various  industries.  The  food industry is the leading contributor to retail turnover. To explore more about the relationship between retailing turnover and industry, we used the retailing turnover data that had not been merged. The percentages of different industries in different states are calculated, as shown in

Appendix 2. It shows that the percentage of food retailing in each region is the highest, which is the same as the result obtained by using merge data.

Prior to the first quarter of 2019, retail turnover displayed a stable increase with a discernible pattern. However, after 2019 Q1, fluctuation appears in each industry. The reason for this change in behavior is the impact of the COVID-19 pandemic, which influenced consumer behavior and retail sales (Mizen, 2021). Since the onset of the pandemic, retail sales have experienced declines due to prolonged lockdowns and stay-at-home orders. These restrictions constrained  spending  and  disrupted  traditional  shopping  habits,  leading to fluctuations in retail turnover data for various industries. The COVID-19 pandemic has had a profound and far-reaching effect on the retail sector, causing shifts in consumer preferences and purchasing patterns.

2.3 Correlation between Retail Turnover and Inflation Rate

The heatmap provides an overview of  the   correlation  between  Retail Turnover   and   Inflation   Rate   for different regions and industries. The x-axis represents various industries, and  the  y-axis  represents  different regions.   Different   colors   indicate different levels of correlation.


One  key  observation  is  that  food retailing   exhibits   the   correlation between turnover and inflation rate is close to 0. That means regardless of   whether    the   price   of   food retailing  increases  or  not,  people tend  to  continue  buying.  Additionally,  this  correlation  pattern  appears  consistent  across different regions, indicating customer behaviors and purchase patterns in food retailing will not be affected by different regions' culture, population and economy. On the other hand, the Department store has a negative correlation between turnover and inflation rate, possibly because alcohol and tobacco are expensive in Australia and not the necessary stuff for living, so people tend to reduce spending on them when prices rise. Another interesting finding is that Tasmania shows a significant negative correlation in other retailing compared to other states. In data processing, the "Other Retailing" category of RT includes Health, Education, Insurance,  Financial  Services,  and  others  from  the  CPI.  This  suggests  that  residents  in Tasmania have different spending behavior. in these industries compared with other states.

3.0 Overview of Covid-19

The epidemic has put unprecedented pressure on the global economy, with countries and governments facing significant economic challenges (Supple & Yu, 2023). Particularly in the retail sector (Olanrewaju & McSharry, 2022), the pandemic had a severe impact on retail sales  due  to  travel  restrictions.  In  addition,  noted  that  COVID-19  also  had  a  significant impact on the Consumer Price Index (CPI).

3.1 Turnover and inflation during the Covid period

Firstly, we control for the time variable referring to the time-series line graphs in the first part. Focusing on 2019 onwards, it is clear that from the beginning of 2020, the first quarter of 2020, there is a significant decline in turnover and inflation, with a more pronounced decline in inflation. The folded trend in inflation reflects the sharp volatility in 2020. Price movements  in  2020  were  heavily  influenced  by  the  COVID-19  pandemic,  leading  to increased volatility in headline inflation data (Reserve Bank of Australia, 2021). From the title of the chart and the red line markers, we can surmise that the COVID-19 pandemic may have been a major contributor to the plunge in inflation and retail turnover in early 2020. The outbreak  may  have  contributed  to  shop  closures,  a  drop  in  consumer  confidence,  and  a slowdown in overall economic activity (Marsh, 2020). As can be seen from the graph, both are on an upward trend in the latter half of 2021, which may result from the beginning of economic recovery, restored consumer confidence and the economic stimulus measures taken by the government.

We can then see a pair of scrolling graphs of the correlation between retail turnover and inflation  over  time,  which  we divide into two periods: before and after COVID-19. The orange broken line indicates the strong and positive correlation between retail turnover and inflation before COVID-19. This means that when retail turnover increases, inflation also increases. At the beginning of 2020, the correlation dropped suddenly and sharply to almost zero, possibly due to fluctuations caused by the early stages ofthe COVID-19 pandemic. The blue dashed line indicates a sharp increase in the correlation from late 2020 to early 2021, followed  by  another  sharp  decline  in  the  second  half  of  2021.  This  may  be  related  to fluctuations in the COVID-19 epidemic and changes in government policy. However, when we explore this issue in depth, it is clear that retail turnover and inflation interact and possess a  certain  lag.  When  inflation  rises,  consumers  will  spend  less  if  retail  outlets  sell non-essential goods. Inflation may reduce demand as consumers reallocate their spending to more  essential  goods  and  services.  Conversely,  a  fall  in  inflation  will  likely  stimulate consumers to spend (Amoussou, 2022).

3.2 Turnover and inflation during the Covid period in different regions and industry

In this section, we break down the impact of the COVID-19 epidemic on the relationship between retail turnover and inflation specific to different industries and regions of Australia. In this interactive bar chart, the x-axis is the region, the y-axis is the correlation between retail turnover and inflation, the blue bar is before the epidemic, and the red bar is at the time of the 2020 epidemic. For the total industry, the correlation is positive except in SA, where the two variables are negatively correlated before the epidemic.

We  begin  by  looking  at  the  FOOD  RETAILING  sector.  The  relationship  between  retail turnover and inflation in each region reversed from a positive to a negative correlation both before and during the epidemic, with the highest being more than -0.06 in WA. The decline in inflation  during  the  epidemic,  coupled  with  the  fact that more  and more Australians are cooking at home, supermarket and grocery shop sales increased dramatically (Commission Factory,  2022).  Additionally,  inflation  began  to  rise  in  mid-2020  as  a  result  of  the consolidation  of  the  food  retail,  restaurant  and  takeaway  classifications,  and  the  sharp downward trend in turnover was further exacerbated by the closure of a large number of restaurants as a result of the nationwide embargo, which severely affected shopping behavior (Commission  Factory,  2022).  Another  hypothesis  is  that  Inflation  declines,  leading  to  a significant decrease in food prices, a sharp increase in turnover, and an epidemic of residents stocking up on food.

And  for  household  goods,  a  significant  increase  in  positive  correlation  can  be  found. COVID-19  The  pandemic  has  created  an  unprecedented  demand  for  goods  such  as electronics,  furniture,  and  sports  equipment  while  people  are  cooped  up  in  their  homes (Amoussou, 2022). This can be found most dramatically in the correlation differentials for South Australia, Queensland and New South Wales. Tasmania, on the other hand, has seen little correlation or change in its correlation and may not have seen much change in the demand for household goods based on its geography.

The impact of the epidemic on the clothing industry is theoretically huge; inflation usually means higher prices, and when prices rise, consumers have less purchasing power. Suppose consumers expect inflation to continue to rise in the future. In that case, they may cut back on non-essential spending, which can lead to a drop in turnover in certain retail sectors, such as clothing and accessories (Brydges et al., 2021). However, we see exceptions in Victoria and WA, particularly in the WA region, where the correlation between turnover and inflation is significantly higher during the epidemic. This may be due to the various economic stimulus packages  introduced  by  the  WA  government  during  this  time.  The  state  government's stimulus reportedly totalled $5.5 billion (Shepherd & Piesse, 2020).

The withering of the Department stores industry is visible to the naked eye. Especially in Victoria, the correlation changed from less than -0.05 to close to -0.25, with the negative correlation  getting  stronger.  Multiple  embargoes  have  led  to  a  decline  in  consumer confidence  and  a  reluctance  to  spend  money  on  non-essential  items  (Mizen,  2021).  As inflation has risen, as a reference point, Victoria is also "number one" in terms of retail sales declining by more than  10  per cent (Australian Bureau of Statistics, 2020). However, the negative correlation before and after the epidemics in South Australia and Western Australia has narrowed slightly.

Finally,  let's  turn  our  attention  to  Other  retailing.  There  is  a  significant  improvement  in turnover and inflation correlation across all regions, especially in Queensland, from over -0.2 to  a  peak  positive  correlation  of  0.32,  but  because our data for this industry includes a multitude  of industry  classifications,  it  also  makes  it  impossible  for  us  to  be  any  more detailed in our specific analyses, which is also one of the shortcomings in our data analysis.

4.0 The insight for food industry

Upon  conducting  an  analysis  of  various  factors  that  influence  the  correlation  between inflation and retail turnover, it emerged that the food industry persistently dominates in retail sales. During the COVID-19 pandemic, when most industries experienced substantial growth or decline, the food industry showed the same volatile trends as before the pandemic. This phenomenon aroused our interest: Why was the Australian food industry not affected by the epidemic crisis?

The horizontal axis of the graph represents time, spanning from 2010 to 2023, with the red dotted  line  marking  the  commencement  of the  COVID-19  pandemic.  The  vertical  axis measures retail turnover in millions of Australian dollars. The graph's legend differentiates the sales trends across various industries through five distinct lines.

From the graph, it's apparent that before the pandemic, Australia's retail sales showed a clear seasonal trend during the second and fourth quarters of each year. This trend coincided with major holiday cycles, particularly Easter in the second quarter and Christmas in the fourth quarter.  Retailers  traditionally  engage  in  promotional  sales  and  marketing  during  these periods, offering significant discounts to stimulate consumer spending.

It  can  be  seen  that  even  after  the  outbreak,  while  many  other  industries  experienced fluctuations  in  retail  sales,  the  food  industry's  sales  (the  orange  line)  continued  to  grow steadily. This suggests that the outbreak did not have a negative impact on the food industry. This is due to the nature of food as a basic necessity, for which demand continues even during economic turmoil. In addition to this, the trend of home cooking during the epidemic, the panic-hoarding behavior of consumers, the rise of e-commerce, and supportive government policies have boosted consumer demand for food. In addition, steady export demand for 70 percent of Australia's agricultural products in international markets, even when hit hard by the epidemic, may also be a key factor underpinning solid food growth, according to the survey.

4.1 The relationship between CPI and RT for food sales

To explore the reasons behind this phenomenon, we analyzed the relationship between CPI and RT for food sales, and detail provided in appendix 3. It indicates that despite seasonal variations and market fluctuations, food industry prices and revenue have remained relatively stable, maintaining a consistent range for the most part. This is consistent with the conclusion obtained  in  part  two  that  the  relationship  between  inflation  rate  and  RT  is  steadily approaching zero in different regions. The reason is that food is a fundamental necessity, with substantial  consumer  demand  for  it.  Even  if prices  increase,  individuals will  continue to purchase them. It implies the food industry's remarkable resilience to economic fluctuations. Food expenditures by consumers have remained consistent despite the economic downturn and elevated inflation. Moreover, the spread of data points suggests that market competition, consumer preferences, and promotional strategies may affect retail food sales.

Shortcoming

1.0 The shortcoming of data

At first, in the process of merging datasets, due to the lack of consistency in industry standard classifications between the two datasets, we attempted to map industry standards from one dataset to another. However, there were some the industry names could not match. In such cases,  we  used  subjective  judgment  to  determine  similar  industry  classifications.  This approach could lead to inconsistencies in the analysis, which could impact the analysis of variables later, particularly when comparing different times or regions. We attempted to fill in the large number of missing values in the merged dataset with mean values. However, this approach  may  introduce  bias  as  the  data  contains  seasonality  or  a  discernible  trend. Furthermore, outliers could signify significant economic occurrences or natural phenomena. Eliminating  or  substituting  the  outliers  could  have  an  adverse  impact  on  our  analyses. Therefore, our choice was to maintain them.

2.0 The shortcoming of analysis

When  analyzing  our  key  business  questions,  the  findings  were  based  on  correlation. However, correlation only indicates a certain degree of association between variables and cannot prove that a change in one variable is the cause of a change in another. Therefore, for the first question, we cannot conclude a causal relationship between the two variables. Due to different  industry  standards,  we  had  to  use  our  best  judgment  to  find  similar  industry classifications.  This  could  cause  our  analysis  results  to be  inconsistent. Furthermore, the category  'Other  Retailing'  encompasses  a  wide  range  of  industries,  leaving  us unable  to discern which specific industries have influenced the relationship between the two variables. Also, when looking at how the pandemic changed the relationship between CPI and RT, it was said that government economic stimulus during the pandemic could affect retail sales and the consumer price index. However, we do not have sufficient information to see how these  policies  changed  the  connection  between  retail  sales  and  inflation.  Additionally, external factors such as global economic fluctuations and supply chain disruptions were not fully considered.

Conclusion

In conclusion, this report analyzed the relationship between the Inflation Rate and RT in Australia,  emphasizing  the  disruptions  caused  by the  COVID-19 pandemic. Our analysis revealed  significant  variations  in  this  relationship  across  different  industries and periods. Despite some data limitations and the challenge of inconsistent industry classifications, we found a complex interplay between CPI and RT, particularly in the food industry during the pandemic. For future research, more data may need to be considered such as actual data affected by economic activities to provide clearer insights into the economic impacts of such global events.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图