代做MAST20026 Real Analysis Semester 1 Assessment, 2025调试数据库编程

MAST20026 Real Analysis

Semester 1 Assessment, 2025

Question 1 (9 marks)

Let p and q be primitive statements.

(a) Write a truth table for the compound statement

q ⇒ (p ∨ (∼ q)).

(b) If q is true and q ⇒ (p ∨ (∼ q)) is true, what can you conclude about the truth value of p? Justify your answer in terms of specific lines in truth table from Part (a).

(c) Find a statement with exactly one connective ∼, ∧, ∨, ⇒ , or ⇐⇒ which is logically equivalent to q ⇒ (p ∨ (∼ q)). Justify your answer using a truth table.

Question 2 (9 marks)

Listed below are the Axioms of the Real Numbers.

O1. ∀x, y ∈ R exactly one of the following is true: x < y, y < x, or x = y.

O2. ∀x, y, z ∈ R if x < y and y < z then x < z.

A1. ∀x, y ∈ R   x + y ∈ R

A2. ∀x, y ∈ R   x + y = y + x

A3. ∀x, y, z ∈ R   (x + y) + z = x + (y + z)

A4. ∃0 ∈ R   ∀x ∈ R   x + 0 = x

A5. ∀x ∈ R   ∃ − x ∈ R   x + (−x) = 0

M1. ∀x, y ∈ R   xy ∈ R

M2. ∀x, y ∈ R   xy = yx

M3. ∀x, y, z ∈ R   (xy)z = x(yz)

M4. ∃1 ∈ R \ {0}   ∀x ∈ R   1x = x

M5. ∀x ∈ R \ {0}   ∃ 1/x ∈ R \ {0}   x · 1/x = 1

D. ∀x, y, z ∈ R   x(y + z) = xy + xz

OA. ∀x, y, z ∈ R if x < y then x + z < y + z

OM. ∀x, y ∈ R if x > 0 and y > 0 then xy > 0

C. Every non-empty subset of R that is bounded above has a least upper bound.

Using only the Axioms of the Real Numbers (and rules of logic) together with the fact that 0x = 0 for all x ∈ R, write a (semi-)formal proof showing that for all a, b ∈ R

if a > 0 and b < 0, then ab < 0.

Note. Here and for the remainder of the exam, you may write informal proofs, and you may assume that algebra and inequalities with the real numbers behave the way you expect.

Question 3 (9 marks)

Let A and B be subsets of R which are both non-empty and bounded above. Define

A + B = {x + y : x ∈ A and y ∈ B}.

(a) Show that if α is an upper bound of A and β is an upper bound of B, then α + β is an upper bound of A + B.

(b) Show that sup(A + B) = sup A + sup B.

Question 4 (12 marks)

For each of the following situations, provide a specific example for which the situation is true, and briefly justify your answer.

(a) A set E ⊆ Q such that the set of all limit points of E is [0, ∞).

(b) A sequence (fn) such that () converges to 9 but (fn) diverges.

(Here  = fn · fn for each n ∈ N+.)

(c) A convergent series  such that  diverges.

Question 5 (13 marks)

Let (xn) be the sequence such that x1 = 0 and

for each n ∈ N+.

(a) Using a proof by induction, show that 0 ≤ xn < 3 for all n ∈ N +.

(b) Is the sequence (xn) monotone increasing, monotone decreasing, or neither? Justify your answer.

(Hint: Compute xn+1 − xn.)

(c) Is the sequence (xn) Cauchy? Briefly justify your answer.

Question 6 (11 marks)

Let f : R → R be the function defined by

(a) Using the  − M definition of limits, show that f(x) = 1/3.

(b) Using the − δ definition of continuity, show that f is not continuous at 2.

Question 7 (13 marks)

Let f : [−1, 1] → R be the function defined by

(a) Let P = {x0, x1, x2, . . . , xn} be any partition of [−1, 1]. Compute the lower Riemann sum L(f, P).

(b) Find a positive lower bound for the upper Riemann integral of f on [−1, 1].

(c) Is f Riemann integrable on [−1, 1]? Justify your answer using Parts (a) and (b).

Note. For Question 8, you may assume without  − M proofs that limits behave the way you expect.

Question 8 (14 marks)

(a) For each of the following infinite series, use an appropriate test or theorem to prove that the series converges or diverges.

(b) Find the radius of convergence and interval of convergence for the power series




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图