代写MAED 5121 Algebra and Its Applications I Midterm Examination, Fall 2022代做迭代

MAED 5121 Algebra and Its Applications I

Midterm Examination, Fall 2022

1. Let f : U → W is a mapping from the set U to the set W, and let X1, X2, . . . , Xn be subsets U.

(a) Prove that f                [10 points]

(b) Let A1, A2, . . . , An be the sets defined by  for all integers 2 ≤ k ≤ n. Prove that Ai ∩ Aj = ∅ for all i ≠ j, and n[i=1Ai =n[i=1Xi .                        [15 points]

2. Let G = {(a, b) ∈ R × R : a ≠ 0}, and let ∗ be the operation on G defined by (a, b) ∗ (c, d) = (ac, bc + d) via the addition and multiplication of real numbers.

(a) Show that G is a non-abelian group under the operation ∗.             [10 points]

(b) Show that H = {(a, 0) ∈ R × R : a ≠ 0} is a subgroup of G.             [5 points]

(c) What are the elements in a left coset (c, d)H of the subgroup H?            [5 points]

(d) Let G/H = {(c, d)H : c, d ∈ R, c ≠ 0} be the set of all left cosets of H. Find a bijection from G/H to the interval [0, ∞).        [5 points]

3. Consider the cycles σ = (3517) and τ = (123) in the permutation group S7.

(a) Express the permutation σ−1τ as a product of disjoint cycles.             [6 points]

(b) Find the order of σ−1τ.                 [4 points]

(c) Prove that for any permutation

α(3517)α−1 is also a 4-cycle.                  [10 points]

(Hint: Determine how the product permutation maps α(1), α(2), . . . , α(7).)

(d) Find a permutation β ∈ S7 such that β(3517)β−1 = (1234).                         [5 points]

4. Let G be a group. Define a relation ∼ on G by a ∼ b if ab−1x = xab−1 for all x ∈ G.

(a) Prove that ∼ is an equivalence relation.              [10 points]

(b) If G = S3 is the permutation group with six permutations, find all elements in the equivalence class [(123)] of the permutation (123).      [7 points]

(c) How many distinct elements are in the quotient set S3/∼? (Show your reasoning for full credit.)        [8 points]





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图