代做FIT5125 / FIT4005 IT Research and Innovation Methods Semester 2, 2025 Assignment 2帮做Python程序

Assessment 1

Faculty of Information Technology

FIT5125 / FIT4005

IT Research and Innovation Methods

Semester 2, 2025

Assignment 2

Topic

Tasks related to material in Weeks 7-12.

Value

This assignment is worth 45% of the total marks for FIT5125/FIT4005.

Assignment due date

11:55 PM Friday 7th November 2025 (AET)

Submission method

Submit the following in Moodle:

Three PDF documents, one for each of the three tasks (A, B and C).

Assignment Criteria:

Task A                                     Task B                                 Task C

Descriptive Statistics                 Inferential Statistics                   Design

Weighting: 30%                      Weighting: 30%                 Weighting: 40%

See Page 3.                        See Page 4.                         See Page 5.

This is an individual assessment; it must be your own work and expressed in your own words.

A marking rubric is available on Moodle.

There are specific requirements for file names on your submission.

Assessment rules:

1.   Note that plagiarism detection procedures may be  applied to each submission. See the University rules and regulations regarding plagiarism and resulting penalties. Any case of plagiarism detected will result in the automatic failure of the entire assignment.

2.   Late submissions will incur a penalty of 5% per day, see:

https://publicpolicydms.monash.edu/Monash/documents/1935752

3.   Monash policy on Special Consideration is available at:

https://www.monash.edu/exams/changes/special-consideration

4.   Due to the size of the unit (over 1000 students) and the nature of the assignment, we aim to mark and return work within 15 working days of submission (i.e. 21 November 2025).

5.  AI tools (e.g., ChatGPT) are permitted for this assignment, and there is no requirement to include a statement regarding their use.

IMPORTANT

Any questions about the assignment should be submitted as a public post to the Ed forum (under the sub-category “Assignments”) so that all students have access to your question and the Chief Examiner’s or Unit Coordinator’s response.

Task A and B are individual activities, and elements of Task C may be completed as either an individual or a group (2-4 students);  however, you  must follow  Monash University’s policies, procedures and regulations relating to academic integrity, plagiarism and collusion.

This is a formal assessment, so tutors are not permitted to provide direct support to you. However, they can give feedback on related studio activities (during a studio).

This assignment aims to evaluate your understanding of descriptive and inferential statistics in research, and the application of human-centred design methods..

Task A (Week 8)

“Descriptive Statistics: Telling a Data Story”

Understanding patterns in system usage is essential for designing better systems. In this task, you will analyse  real data from the Kluster Networking Challenge, which  investigated how different system configurations affect participant engagement and interaction patterns.

The Kluster study tested four experimental conditions:

All Features + 50% Waiting List

All Features + No Waiting List

Without YouTube + 50% Waiting List

Without YouTube + No Waiting List

Your goal is to understand the data from the perspective of designing a better collaborative system. Complete the following:

1. Explore the  Kluster Networking Challenge datasets provided on Moodle (system logs and transcription logs). Familiarise yourself with the available variables and data structure (no submission).

2. Formulate a research question that examines differences between the four experimental conditions.  Your question should  focus on participant engagement and interaction patterns (e.g., how features and waiting lists impact behaviours like  "hopping around" between rooms, session duration, feature usage, etc.) (max. 75 words).

3.   Select and calculate two appropriate descriptive metrics (e.g., mean, median, standard deviation, frequency counts) that reveal differences across ALL four conditions. Present:

The variables/fields you used from the dataset

The calculated values for each condition

●   A brief justification of why these metrics are appropriate (max. 100 words).

4.   Create and submit an appropriate visualisation that clearly shows the differences between all four experimental conditions. The visualisation should:

●    Be fully annotated (title, axis labels, legend, units)

●    Use the appropriate chart type for your data

●    Make comparisons between conditions easy to interpret

5.  Write a narrative description of your findings as they relate to your research question. Your narrative should:

●    Reference both your chosen metrics and visualisation

●    Discuss what the differences (or similarities) between conditions suggest about participant engagement and interaction patterns

Connect findings to implications for designing better systems (max. 250 words).

What to Submit

A PDF document, named "YOUR-STUDENT-ID-Assignment-2-Task-A.pdf", containing your response to the assignment (including the visualisation)..

How Much to Write

Follow the maximum word limit stated above. The word count does not include spaces. Only words within the word limit will be marked.

Task B (Week 9)

“Inferential Statistics: Working with Hypotheses”

Communication patterns in collaborative systems can vary based on numerous factors, including system features, participant characteristics, and interaction dynamics. In this task, you  will formulate and test hypotheses about communication patterns using a subset of the Kluster Networking Challenge communication data.

You will be provided with a subset of data, including variables related to:

●    participant communication style

●    relevant communication metrics

●    participant demographics

Use inferential statistics to test relationships or differences in communication patterns:

1.   Explore the Kluster Networking Challenge communication and survey data subset provided on Moodle. Familiarise yourself with the available variables (no submission).

2.   Formulate and write down a  testable hypothesis about  participants’ communication behaviours by linking variables from the Kluster Networking Challenge communication data subset with measures from the survey dataset. The hypothesis should be specific and suitable for examination using inferential statistical methods (max. 75 words).

●    Focus on relationships between variables or differences between groups.

●    Be realistic that the relationship can be tested with the data provided.

●    Relate to communication styles, participation patterns, or demographic factors.

3.  Write down the null hypothesis for your proposed hypothesis (max. 50 words).

4. Identify your variables (max. 75 words):

●    Independent variable(s).

●    Dependent variable(s).

●   At least two confounding variables that could affect your results.

5. Describe your statistical approach (max. 200 words):

What statistical test(s) will you use to test your hypothesis?

What are your assumptions about the data (e.g., normality, scale of measurement)?

Why is/are this/these test/tests appropriate for your hypothesis and data?

6.   Conduct the statistical test(s) using the provided data and a tool of your choice (e.g., Python, R, SPSS, Excel). Present (max. 150 words):

The test statistic(s) and p-value(s).

Your interpretation of the results (do you reject or fail to reject the null hypothesis?)

What this means in practical terms for understanding communication in Kluster.

What to Submit

A PDF document, named "YOUR-STUDENT-ID-Assignment-2-Task-B.pdf", containing your response to the assignment.

How Much to Write

Follow the  maximum word limit stated above. The word count does not include spaces. Only words within the word limit will be marked.

Task C: Weeks 11 and 12 (Design)

“Design for Multilingual Collaboration”

Design is a critical component of the innovation process. In this task, you will develop design problem  statements based on the bank of user quotes provided on Moodle. These quotes capture real experiences of people using Zoom, focusing on challenges and opportunities for multilingual interaction and online engagement in Zoom.

Using insights from the quotes, you must identify and describe key interaction problems experienced by users. Based on this analysis, you will propose potential design solutions that address these  problems and  improve  users’ overall interaction experience in Zoom. Your ideas should make online interaction more inclusive, natural, and socially aware for participants from diverse linguistic backgrounds.

For this activity, you may work alone or in a group of 2-4 students (e.g. from Kluster Networking Challenge) when brainstorming and affinity diagramming; however, the design problem statements, design rationales, and the annotations to the Miro boards that you submit must be your own work.

Step 1: Understanding the Design Context

1.   Review the bank of quotes provided on Moodle. These quotes are accounts of user experiences with video collaboration platforms, with particular focus on multilingual contexts.

2.   Using Miro, develop an affinity diagram to identify and synthesise key themes emerging from the provided quotes that  relate to multilingual collaboration. Group similar ideas, patterns, and user sentiments together to uncover the main challenges, needs, frustrations, and opportunities expressed by users in their experiences with online interaction.

3.   Based on the themes you identify, develop two or more design problem statements that you will use to brainstorm solutions.

Step 2: Design Ideation

4.   Using Miro, brainstorm solutions to address your problem statements, consider:

What extensions to the features or interface elements on Zoom would help?

How would these features or interface elements work?

How do they address the needs expressed in the user quotes?

5.   Identify two significantly different solutions; extend the description of these designs on you Miro board and separately write a design rationale statement for each to capture:

How the design addresses the needs and challenges identified in the user quotes.

What aspects does your design aim to support or improve?

Potential limitations or trade-offs in your design.

What to Submit

1.   Individual submission:

●   A PDF document named "YOUR-STUDENT-ID-Assignment-2-Task-C.pdf"

2. Your PDF should contain:

●    Links to annotated copies of your Miro boards for Part 1 and Part 2; annotations should allow a marker to understand your affinity diagramming and brainstorming process..

Your design problem statements (max 50 words per problem statement)

Your two design rationale statements  (max 400 words per rationale)



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图