代做MAED 5121 Algebra and Its Applications I Midterm Examination, Fall 2024代写Java编程

MAED 5121 Algebra and Its Applications I

Midterm Examination, Fall 2024

1. Let ~ be the relation defined on the set of integers Z by

n ~ m for n, m ∈ Z     if    n2  ≡ m2  mod 7;

i.e., n ~ m if n2  — m2  is a multiple of 7.

(a) Show that ~ is an equivalence relation.                                                                         [8 points]

(b) How many elements (equivalence classes) are in the quotient set Z/~? Why?                       [8 points]

(c) Is the operation  on Z/~ defined by [x]  [y] = [x+y] for [x], [y] ∈ Z/~ a well-defined binary operation on Z/~? Why?                                                                                                       [4 points]

(d) Is the operation ⊠ on Z/~ defined by [x] ⊠ [y] = [xy] for [x], [y] ∈ Z/~ a well-defined binary operation on Z/~? Why?                                                                                                       [5 points]

2. Consider the cycles σ = (356) and τ = (1357) in the permutation group S7 .

(a) How many distinct 7-cycles does S7  have?                                                                      [5 points]

(b) Express the permutation τ2  as a product of disjoint cycles.                                               [5 points]

(c) Express the permutation σ —1τ as a product of disjoint cycles.                                           [5 points]

(d) Find the order of the permutation (σ—1τ)360 .                                                                [5 points]

(e) Can you find a cycle P ∈ S7  such that P2  = (124)(356)? Show your work for full credit.           [5 points]

3. Let G be the set of 3 × 3 invertible real matrices, which is a group under matrix  multiplication. Let

(a) Show that  is not an abelian group.                                                                            [4 points]

(b) Prove that  is a subgroup of G , and determine if H is abelian or not.                              [7 points]

(c) Show that  = {A ∈  : AB = BA for all B ∈ } is a also a subgroup of . What kind of matrices are in ?                                                                                                              [7 points]

(d) In the left coset decomposition of  by the subgroup x , what are the elements in the left coset Cx ,

where

 

Is the left coset Cx a countable set, or uncountable set?                                                 [7 points]

4. Let f : G -→ H be a group homomorphism, and h : G -→ G is defined by h(x) = x2 . Prove the following:

(a) If G is abelian and f is surjective, then H is also abelian.                                                [8 points]

(b) If f(G) has n distinct elements, then xn  ∈ ker f for all x ∈ G.                                           [8 points]

(c) G is abelian if and only if h is a group homomorphism.                                                     [9 points]


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图