代写ELEC ENG 3110 Electric Power Systems ELEC ENG 7074 Power Systems PG (Semester 2, 2025) Assignment

ELEC ENG 3110 Electric Power Systems

ELEC ENG 7074 Power Systems PG

(Semester 2, 2025)

Assignment 2:

Power System Steady-State Performance

(Due, by electronic submission, 23:00, Fri. 31 October 2024)

Investigation of power system steady-state performance

The objective of this assignment is to investigate the steady-state performance of the seven bus power system depicted in Figure  1. You will employ the educational version of the Power World power-flow program to conduct the required power-flow studies.

The deliverable outcome is to be a comprehensive technical engineering report that clearly and concisely details the conduct of your investigation, clearly summarizes, discusses and interprets the key findings from your analysis, and draws technical conclusions from the studies. The re- port should address each of the matters and questions listed in the following scope of work. Credit will be given for innovative studies and analysis that either reveal other aspects of system performance or which improve the performance of the system.

It is recommended that you follow the guidelines for writing technical engineering reports pro- duced by The Institute of Engineering Technology and which are available at the following web-site: https://www.theiet.org/media/5182/technical-report-writing.pdf

With reference to the above guidelines your report is expected to convey information to other engineers about key aspects of the performance of the system and it is intended for selective reading. The latter point means that you should organize your report into sections with inform- ative and numbered headings.

It is strongly recommend that you approach this assignment in the same way as you would as a professional engineer conducting the project for an employer or client.


Figure 1: Base case power system model.

1 Scope of work

(a) System model and parameters. Clearly tabulate key parameters of the network and its components including, but not limited to,

nominal voltage levels of the network buses;

equipment current and/or MVA ratings;

transformer impedances in per-unit of both system MVAbase and the transformer MVAbase;

transmission line lengths, surge-impedance loads (SIL), line parameters in per-unit on the system MVAbase and in per-unit of the SIL.

You will need to use the PowerWorld software and its documentation to navigate to the various forms and tables that itemize the relevant parameters. Treat this exercise as the normal process of becoming familiar with a new software package.

(b) Analysis of base case. For the base case scenario provided solve the power-flow and tabulate the solution including:

the bus voltage magnitudes and angles;

the load connected to the main load centre at bus 7;

the output (i.e. P & Q) from the generators;

the real and reactive power flow and losses in each transformer and transmission line;

comparison of the transmission line power flows with their SIL.

Document the real and reactive power losses of the entire system.

Explain why the performance of the base case scenario is unsatisfactory.

(c) Adjustment of base case. By adjusting the transformer tap positions adjust the sys- tem 330 kV node voltages so they are between 1.0 and 1.075 pu and the main load bus voltage is in the range from 1.02 to 1.05 pu. The generator bus voltages are controlled to 1.0 pu.

Explain the strategy that you use to adjust transformer tap positions.

Explain why it is desirable for the tap-positions ofthe two transformers between nodes 2 and 7 to be the same.

Record the system node voltages, transformer-tap positions and system losses before and after tap-adjustment.

(d) Effect of contingencies. The performance of the  system following the outage of a transmission element is very important when assessing the secure operating limits of the system. Use the study case following the transformer-tap adjustments that you applied in the previous part as the starting system for this part. Tabulate the system voltages that result from each of the following contingencies. (Note, these contingen-cies are not applied cumulatively. They are each applied to your adjusted base case from (c)).

(i)        Transmission line from bus 5 to 2 disconnected.

(ii)       Transmission line from bus 4 to 2 disconnected.

(iii)      Transmission line from bus 5 to 6 disconnected.

(iv)      Transformer #2 from bus 2 to 7 disconnected.

Comment on the results from each of these contingency studies. Which of these con- tingencies do you consider to be the worst and why? Is the performance of the system adequate in response to any of the contingencies?

(e) Voltage control and stability with SVC. A potential solution for the inadequate per- formance of the base case following some of the above contingencies is to install a Static Var Compensator (SVC) at bus 2. A SVC can be represented, for steady-state analytical purposes, by a generator with zero power output and with reactive power limits set appropriately. Thus, to determine the required SVC capacity connect a syn- chronous generator to bus 2 with P = 0 and set the minimum and maximum reactive power limits to a very large value (e.g. 9.999 x 103 MVAr).

Use the study case following the transformer-tap adjustments that you applied in part (c) as the starting point for your analysis in this part.

Determine the SVC lagging reactive-power capacity that would be required to achieve a bus 2 voltage of 1.05 pu following the worst contingency.

Determine the SVC leading reactive-power capacity. Explain the basis for your deter- mination.

(f) Increase in SVC capacity due to increase in load. Suppose that the main load is increased by 200 MW from 700 MW to 900 MW at the same power factor as the base case. The output of generator #3 is increased by 200 MW from 400 MW to 600 MW.

With the SVC capacity determined in the previous part can the system survive the worst line-outage contingency following the load increase? If so are the post-distur- bance voltages within limits. Are the lines and transformers operating within their limits?

If necessary determine the increase in SVC capacity that is required to ensure secure supply of the 900 MW load.

2 Factors considered in assessment

This assignment is structured as an engineering investigation and the assignment report will be assessed in that context.

It is strongly recommend that you approach this assignment in the same way as you would as a professional engineer conducting the project for an employer or client.

Thus assessment will consider:

(a)         Completion of the scope of work.

(b)         Report organization, brevity and clarity.

(c)          Clarity and sophistication in interpreting and explaining the engineering significance of the findings.

(d)         Accurate, relevant and clear application of power system analysis principles to the scope of work.

(e)         Accuracy and correctness of results.

(f)          Skill in application of the Power World power-flow program.

Students sometimes ask how long should the report be. My answer is that is a question you must decide for yourself based on what you consider to be an appropriate level of analysis and dis- cussion required to clearly and concisely communicate your findings to the reader. I doubt that you could achieve this objective in less than 10 pages and I doubt that you would require more than 30 pages.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图