代写125.710 Semester 2 2025 Final Assessment帮做R程序

125.710 Semester 2 2025 Final Assessment

Final exam

List of Topics Covered:

1.         Derivative Contracts and Markets

2.         Mechanics of Futures Markets

3.         Hedging Strategies using Futures

4.         Interest Rate and Interest Rate Futures

5.         Pricing of Futures

6.         Swaps

7.         Stock Option

8.         Trading Strategies Involving Options

9.         Pricing of Options

10.       Value at Risk & Credit Risk

1.         Derivative Contracts and Markets

1) Overview of forward, futures, and options contract

-    Futures/forwards: commitments where parties are obliged to buy/sell assets in the future at a pre-determined price.

-    Futures: standardised, exchange traded, and daily settled, with default risk assumed by clearinghouse.

-    Option: give the holder the right (not the obligation) to buy or sell at a certain price.

2)  Payoffs from:

-    A long/short forward

-    A long call/put; a short call/put

3)  Types of traders

-    A trader is hedging when he/she has an exposure to the price of an asset and takes a position in a derivative to offset the exposure.

-    In a speculation the trader has no exposure to offset. He/she is betting on the future movements in the price of the asset.

-    Arbitrage involves taking a position in two or more different markets to lock in a profit.

2.         Mechanics of Futures Markets

-     Margins (initial margin, maintenance margin and variation margin)

-     Open interest= number of long positions = number of short positions

3.         Hedging Strategies using Futures

-     Long (or short) futures to lock in the price when you will purchase (or sell) an asset in the future.

-     Futures hedging effectively transfers the price risk to basis risk.

-     Basis: the difference between the spot price and the futures price of a commodity.

•    Basis (b2) = S2 - F2

•    Net amount paid/received = F1 + b2

•    Choice of the delivery month and/or asset underlying the futures

-    Hedging investment asset with futures

•   Optimal hedge ratio,

•   Optimal number of contracts,

-    Hedging portfolio with index futures

•   Optimal number of futures contracts:

•   Changing Beta (from β to β*)

If the face value of the asset is Va and face value of the future index is Vf, optimal number of short (or long) position is H*=(β- β*) (Va/Vf)

4.         Interest Rate and Interest Rate Futures

1)   Interest Rates

-    Discrete and continuous compounding rates

-     Spot/zero rate (for time T)

-    Forward rate: (Note: R, and R2 are continuously compounded)

-    Forward rate agreement (FRA)

-    Contract value:

-    Duration definition (a measure of the average life of a bond):

-    Duration

-    Theories of term structure: expectation theory, market segmentation, liquidity preference

2) Interest Rate Futures

-    Duration-Based hedging

5.         Pricing of Futures

-    Arbitrage portfolio: IfF0  is too high: short forward + borrow and buy asset and ifF0  is too low: long forward + short asset. Generally,

-    Prices:

-

Value of the contract?

6.         Swaps

1)    Swaps are used to transform. a liability or an investment (fixed vs. float)

2)   Apply comparative advantage argument to design a swap; know how to calculate effective borrowing/investment rate.

3)   Valuation of interest rate swaps

-          Valuation as bonds: Vswap = Bfix - Bfloat

-          Valuation as FRAs: Vswap = sum of VFRAs

7.         Stock Option

1)   Option positions

-     Long call/put (premium is required)

-      Short call/put (margins are required)

-     Understand how cash dividends, stock dividends and stock splits affect (or not) the number of options and strike price.

2)  Properties of Stock Options

-    Payoffs of four option positions

-    Effects of variables on option pricing

3)  Derive arbitrage argument between two portfolios: (1) European call + zero-coupon bond that pays K at T and (2) European put + stock. (Put-call parity: c + Ke-rT = p + S0)

-    If call price is too high: short call + (borrow and) buy put and stock

-    If call price is too low: long call + short put and stock (and invest)

-    European options (w/ dividends) c + D + Ke-rT = p + S0

-    American options (w/dividends) S0 – D – K ≤ C – P ≤ S0 – Ke-rT

8.         Trading Strategies Involving Options

-     Bond plus option to create principal protected note

-      Stock plus option

-     Two or more options of the same type (a spread)

-     Two or more options of different types (a combination)

9.         Pricing of Options

1)   Binominal Trees

-    No-arbitrage argument

•    Set up a riskless portfolio with long D shares and short 1 call:

•     S0 u Δ – ƒu = S0 d Δ – ƒd

•    ƒ = S0  Δ – (S0 u Δ – ƒu ) e–rT

-    Risk-neutral valuation

•     Find p that gives a return on the stock equal to the risk-free rate:

Risk-neutral probability

-     Two-step binominal trees

•     Need u, d, and p (and r and ∆t)

•     For European options:

•     For American options: Need to check the payoff from early exercise with the above formula result.

•     For continuous distribution of stock return, we can get u and d based on volatility (σ) and length of time step (∆t):

2)   The Black-Scholes-Merton Model

-     In a short period of time of length Dt, the return on the stock is normally distributed:

-     Then, the logarithm of ST is normal, ST  is lognormally distributed

-    The continuous compound return (x) is normally distributed, its expected return is (μ – σ2/2) not μ .

-   The BS model starts from the instant risk-free hedging condition and reaches a differential equation.

-   Applying the Options contract condition, such as CT=Max(ST-K,0), we can get a solution of the differential equation. The solution is the Block-Sholes model:

What is the risk neutral interpretation of the BS model?

10.       Value at Risk & Credit Risk

1)  Value at Risk: Three key words (%, T, K). Time units (from daily to monthly or yearly) in volatility.

-     Two approaches to estimate default probability: (1) historical data, (2) bond spread

-     Historical data provided by rating agencies

2)  Credit risk: Arises from the possibility of a default by the counterparty.

•    Hazard rate: probability of default (PD) conditional on no earlier default

•    Conditional PD in the given year = survival rate until the end of previous year / unconditional PD during the given year

Cumulative PD by time

The expected default loss = Risk-Free bond - Risky bond

The loss if defaulted

•   (Risk-Free bond - Risky bond)/ Risk-Free bond =s =λ*(1-R) where s is defined as credit spread, or default loss rate

(=Risky bond value - Risk free bond)/Risk free bond value)

and λ: default rate (or probability), R: recovery rate.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图