代做STSCI 5740 Machine Learning and Data Mining帮做R编程

Machine Learning and Data Mining

Problem 1 (6 points)

1. Express Var(X1  - X2) through the variances and covariances of X1 , X2   (assuming all variances exist).

2. Assume that X1 , . . . , Xn  are i.i.d. real-valued random variables with finite variances. Show that

3. Assume that X, Y are independent random variables with E[X] = 0, E[Y] = 1, Var(X) = 1, Var(Y) = 2.  Compute

E[(3X + Y)(5Y + 2X - 1)].

Problem 2 (8 points)

Assume that we have the regression model

Y = f(X) + ε,

where ε is independent of X  and E[ε] = 0, E[ε2] = σ 2 .   Assume that the training data (x1 , y1 ), . . . , (xn , yn ) are used to construct an estimate of f(x), denoted by fˆ(x).  Given a new random vector (X, Y) (test data independent of the training data):

1.  Show that

2.  Show that

3.  Explain the bias–variance trade-off based on the above equation.

4.  Explain the difference between training MSE and test MSE. Can expected test MSE be smaller than σ 2 ?

Problem 3 (6 points)

Consider a classification problem where the response Y takes values in C = {1, 2, 3}. For a fixed x0 , suppose

P(Y = 1 | X = x0 ) = 0.6,    P(Y = 2 | X = x0 ) = 0.3,    P(Y = 3 | X = x0 ) = 0.1.

1. What is the value of the Bayes classifier at X = x0 ?

2. What is the Bayes error rate at X = x0 ?

3.  Consider a naive classifierf(ˆ)(x0 ), called random guessing: we pick one number uniformly

from C = {1, 2, 3} as the label.  Compute its expected test error rate, and show that the Bayes error rate is smaller.

Problem 4 (8 points)

Solve Problem 1 on page 52 (Chapter 2.4) in the textbook Introduction to Statistical Learning (2nd edition).

Problem 5 (12 points)

Solve Problem 9 on page 56 (Chapter 2.4) in the textbook Introduction to Statistical Learning (2nd edition). The dataset Auto . data can be found at:

https://www.statlearning.com/resources-second-edition

Follow the code in Chapter 2.3.4 to load the data.  For this and later problems, include all R code and R output that you use.

Problem 6 (5 points, required for STSCI 5740, optional for 3740)

Classification is an important research area.  In this problem, we study the excess risk of a classifier.

Let Y ∈ {0, 1}. The Bayes classifier is

Since p1 (x) is unknown, we estimate it withˆ(p)1 (x) ∈ [0, 1] and define the plug-in classifier fˆ(x) = 1 if ˆ(p)1 (x) > 1/2, and 0 otherwise.

Define the excess risk as

R(fˆ) — R(f*),

where R(f) = P(Y ≠ f(X)). Prove that

R(fˆ) — R(f*) ≤ 2E [|ˆ(p)1 (X) — p1 (X)|].

Hint: You may first prove



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图