代写PUBPOL 5310 Macroeconomics Fall 2025代写数据结构语言程序

PUBPOL 5310

Fall 2025

I would like to give some examples of some questions I’ve asked in the past, on courses that are related to PUBPOL 5310. These are not perfect review questions for our exam.

And the topics covered (and order of topics covered) were different in these prior years. So the questions below are not fully representative of an exam. But they give some sense of some of the types of questions I’ve asked.

A few notes:

•    In the older exams, I was having students use calculators to perform. calculations in those exams; this won’t be needed for our exam. I may have you perform very simple (integer) calculations; if so, these will be do-able by hand.

•   These are just cut-and-paste examples from old exams, selected to overlap with

topics that we have covered so far. This isn’t meant to represent the length our exam will take.

•    Don’t worry about the exam #s or points #s. They are not meaningful given this cut- and-paste exercise.

--

1. [8 points] For each of the following examples state whether the data are numerical or categorical. Also state whether the data are cross-section, time series, or panel data

Numerical or Categorical?            Cross-section, Time

series, or Panel?

Data on Sales this quarter by each of 23

Sales Representatives

Data on whether the S&P 500 stock

market index rose or fell each day, for all

trading days in 2018

Data on mortality rates in each US State

from 1978-2010

Data on political party affiliation, for a sample of eligible voters in 2020.

3. Consider the following output from Stata, summarizing information on a variable

“yrseduc” which contains the number of years of schooling for 65,685 adults sampled from the US population in 2012.

yrseduc

 

Percentiles

Smallest

 

1%

6

0

 

5%

10

0

 

10%

12

0

Obs               65685

25%

12

0

Sum of Wgt.       65685

50%

14

 

Mean           14.07761

 

 

Largest

Std. Dev.      2.718555

75%

16

20

 

90%

18

20

Variance   [omitted by Doug]

95%

18

20

Skewness      -.06566363

99%

20

20

Kurtosis       5.261059

3.1 [3 points] What is the variance of yrseduc in this sample?

3.2 Use the output to assess whether the data are skewed, and if so in what direction. Give two specific measures to justify your conclusion.

Question 3 [4 points] We estimate the regression GDP_pc = b1 + b2 ln(X), where GDP_pc is total real GDP divided by the population, and X is the number of individuals working in the high-tech sector, how do you interpret b2?  Be as precise as possible

Question 5 [26 points]       When a newborn is classified as “at risk,” doctors will perform extra checks and interventions. You are interested in measuring the financial costs of these interventions, and so you have collected a data set where the unit of observation is an infant. First you run a regression of “Hospital Expenditures” on a dummy variable for “at risk” . (mean hospital expenditures per child are $85,000, with a std. deviation of $15,000) Your regression results are:

Hospital Expenditures

=

79500

(10,000)

 

N = 63

+          20,000 * AT_RISK (5,000)

 

R-squared = 0.07

a. [6pts]        What are the average expenditures for a child “not at risk”? What are the average expenditures for a child “at risk”?

You now run a multivariate regression which also controls for birthweight and get the following:

Hospital Expenditures  =     79,500  +        10,000 * AT_RISK       -          30 * Birthweight

(12,000)         (4,000)                                           (10)

N = 63             R-squared = 0.27

b. [5pts] What are the predicted expenditures for a child who is “not at risk” and has a birthweight of 2000 grams?

c. [4 pts]       Comparing two babies with the same at risk status but where one has a higher birthweight than the other by 500 grams, would expenditures be higher or lower for the heavier baby?  By how much?

d. [8 pts]        Interpret the coefficient on AT_RISK (b2=10,000). Be as precise as possible

Question 5. Below are the results from a regression of automobile price on characteristics for a sample of 63 new car models. Car price (PRICE) is measured in dollars. Power (POWER) is a measure of how powerful the car’s engine is. Miles Per Gallon (MPG) is a measure of fuel efficiency. DOMESTIC is an indicator variable which equals 1 if the manufacturer was based in the USA. The numbers in parentheses are standard errors.

PRICE =          20000  + 375 POWER  +          210 MPG        -     5000 DOMESTIC              R2=.35

(1.5)      (100)            (20)                        (30)

(a) (3 points) Explain in words what the coefficient in front of MPG is telling us in the equation.

(b) (2 points) Explain in words what the coefficient in front of DOMESTIC is telling us in the equation.

True/False. Choose the best answer. You do not need to show your work. (2 points each)

3. The OLS estimator minimizes the sum of squared vertical deviations of actual points from the regression line.

1. When sxy > 0, it must be the case that b2 > 0.

Multiple Choice. Choose the best answer. You do not need to show your work. (2 points each)

1. A covariate is the same thing as:

a. a test statistic.

b. a dependent variable.

c. a regressor.

d. an estimator.

1. Which of the following measures the spread of a random variable x?

(a) The median.

(b) The mode.

(c) The standard deviation.

(d) The 75th percentile.

8. In a bivariate regression of Y on X the estimated slope is 5 and the estimated intercept is 10. For a particular observation the actual X is 5. What is the predicted value of Y?

a)   -5

b)  5

c)   20

d)  35

e)   None of the above

3. Which of the following data series are least likely to be positively skewed?

a.  A cross-section of income data

b.  A cross-section of data on height

c.  Payouts from lottery tickets

d.  House prices

e.  They are all positively skewed


 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图