代写2030AFE Business Intelligence Trimester 2 2025 Assignment 2代写Python编程

2030AFE Business Intelligence

Trimester 2 2025

Assignment 2

(worth 55% of the overall assessment)

DUE DATE: 6:00 PM Brisbane time, Thursday 16 October 2025

(Online submission via Assignment 2 link under Assessment in Learning@griffith website)

Instructions:

• Data files are provided in Excel/CSV format in the assessment section of the course website.

• In question 1, the Dashboard should be constructed using Power BI Desktop.

•Your answers to question 1 part 1 can be submitted electronically as a Power BI report.

• Your answers to question 1 part 2 can be submitted electronically as a Word document.

• Your answers to question 2 can be submitted electronically as a Power BI report.

• Your answers to question 3 can be typed in a Word document and submitted

electronically.    (Excel or Python can be used to analyse data for part b of question 3).

• You are required to keep a copy of the submitted assignment to re-submit, in case the original submission is lost for some reason.

Marking criteria:

For each question, marking will use the following weighting:

1. Correctness of the identification of the data type and methodology used (20%)

2. Successful application using the computer software (Power BI desktop for questions 1&2, Excel or Python for question 3) (35%)

3. Interpretation of the charts/graphs and correct answers to the question(s) (35%)

4. Professional presentation of the assignment (10%)

QUESTION 1 [30 marks]

You are required to use the file OfficeWorld_Database.xlsx to develop a Dashboard in Power BI Desktop. Complete the following tasks:

Task 1: Dashboard Development in Power BI (15 marks)

a) Use the Power Query Editor in Power BI Desktop to clean and transform the data before loading it into Power BI. (1 mark)

b) Construct a data model following a star schema architecture. (1 mark)

c) Design a Dashboard using appropriate visualizations. Ensure the dashboard provides interactive filtering options, such as slicers, to support dynamic data exploration. (13 marks)

Submit the dashboard as a Power BI Report file.

Task 2: Business Problem Analysis (15 marks)

Assume the role ofa Data Analyst in an organization. Using the dashboard you created, analyse a hypothetical business problem. Demonstrate how the dashboard can support data- driven decision-making to address the issue and propose solutions. (15 marks)

Submit your analysis in a Word document (maximum 1500 words).

QUESTION 2 [10 marks]

Part 1: Using the dataset “Laptop_sales_ 2025.csv”, generate box plots to summarize the revenue by product. Based on the box plots, provide a description of the revenue distribution for each product using appropriate descriptive statistics (e.g., median, quartiles, spread). (2 marks)

Part 2: Application of DAX (Data Analysis Expressions) (8 marks)

•    All the questions must be solved exclusively using DAX formulas in Power BI.

•    Do not use built-in interactive features such as slicers, filters, or manual selections to answer the questions.

•    Your answers should show that you can write and apply DAX expressions. Please stick to the DAX functions and techniques we’ve covered in this course.

•    Please do not rely on AI-generated DAX codes (e.g., from ChatGPT or similar tools). Using such codes will result in a reduction of your marks.

•    Use the file: Laptop_sales_ 2025.csv

(a) Calculate Cost of Goods Sold (COGS) for each record using the formula: COGS = Unit Cost × Units Sold

(b) Calculate Profit for each record using the formula:

Profit = Revenue − COGS

(c) Create a set of measures that calculate the total profit for each product from online sales in the combined North and South regions. Display these results in a Pie Chart that shows both the absolute profit values and their percentage share.

(d) List the Sales Representatives in the “West” region who have made at least one sale of both “ProBook” and “Ultrabook”, with a combined sales value greater than 25,000. Present the names of these Sales Representatives in a Table. Finally, create a separate measure that counts the number of Sales Representatives who meet this criterion and present it using a card visual.

(e) Create a measure to rank all Sales Representatives by their total profit, ordering them from highest to lowest. Present the results in a table that displays each Sales Representative alongside their corresponding rank.

Submit Q2 as a Power BI  file.

QUESTION 3 [15 marks]

a)  What is text mining? Briefly describe one application in Business (2 marks)

b)  For numerous local governments in Canada, tourism serves as a vital source of revenue to uphold a high quality of life for their residents. One method of generating tourism revenue is through taxation applied to the hotels where tourists choose to stay. A tourism hotel operator seeks to explore the relationship between guest nights and local government tax revenue, with the intention of predicting future tax revenue. Annual data for both variables spanning from  1980 to 2024 have been collected. Using an appropriate  data mining technique  learned  in this  course,  analyse  the relationship between these two variables and provide insights to support tourism revenue planning. You may use Excel or Python to conduct your analysis.

Tasks

1) Exploring the Relationship (2 marks):

Measure and describe the strength and direction of the association between guest nights and tax revenue.

Explain what the result suggests about the connection between tourist activity and government revenue.

2) Visualization (1 mark):

Create an appropriate chart to visually represent the relationship between guest nights and tax revenue.

Use the visualization to support your explanation of how the two variables are connected.

3) Building a Predictive Model (10 marks):

•   Develop a model that uses guest nights to explain and predict changes in tax revenue.

•   Present the key outputs ofthe model (e.g., main coefficients, fit statistics).

•   Assess the model and interpret the results to explain whether higher numbers of guest nights are linked with higher tax revenues.

•   Discuss how the model could be applied for forecasting future revenues, and highlight any limitations.

(You can use Excel or Python to do the analysis.)

Data File: Tourism_data.xlsx

(Answers to Question 3 can be submitted in a Word document)

 

 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图