代写URBAN5111 Principles and Applications of GIS Lab 5 Spatial Analysis代做留学生SQL 程序

URBAN5111 Principles and Applications of GIS (University of Glasgow)

Lab 5 Spatial Analysis (2)

Learning Objectives

•     Explore Spatial Analyst toolbox in ArcGIS Pro

•     Explore 3D Analyst toolbox in ArcGIS Pro

•     Learn to generate distance surface

•     Learn to create TIN, DTM and DSM from Lidar data

•     Learn to derive slope, aspect and hillshade from DTM

5.1 Spatial Analyst and 3D Analyst in ArcGIS Pro

5.1.1 Spatial Analyst

The Spatial Analyst extension for ArcGIS Pro provides a suite of tools and capabilities for performing comprehensive, raster-based spatial analysis. With this extension, you can employ a wide range of data formats to combine datasets, interpret new data, and perform. complex raster operations. Examples of the analysis that you can do with Spatial Analyst include terrain analysis, surface modelling, surface interpolation, suitability modelling, hydrological analysis, statistical analysis, and image classification.

Spatial Analyst provides many geoprocessing tools to perform. spatial analysis operations. In addition to the purely analytic tools, general categories of these tools include those that perform. basic mathematical and logical operations, as well as raster dataset creation and processing. The tools are organized by groups of related functionality into toolsets.

We will look at the tools in Distance toolbox in section 5.2.

5.1.2 3D Analyst

ArcGIS 3D Analyst extension in ArcGIS Pro provides tools for creating, visualizing, and analysing GIS data in a three-dimensional (3D) context.

•    Using ArcGIS 3D Analyst extension, you can do the following:

•    Create and analyse surfaces and other 3D data.

•    Import 3D feature data from multiple sources.

•    Use TINs as an elevation source.

•    Manage and maintain lidar data using the LAS dataset.

•    Edit point classification of lidar data using the LAS dataset and geoprocessing tools.

•    Update surface data over time.

•    Conduct visibility analysis with 3D feature and surface data.

•    Evaluate geometric properties and relationships between three-dimensional features.

•    Use deep learning to classify point clouds.

We will use the tools in 3D Analyst to create TIN, DTM and DSM from Lidar data, based on which we can calculate slope, aspect and hillshade. We will also visualize 3D buildings with the height information derived from Lidar data.

5. 1.3 Configure licensing setting

To be able to use the tools in 3D Analyst and Spatial Analyst toolboxes for the exercises in this Lab, we need to enable the relevant licenses.

1.    Create a new project.

Start ArcGIS Pro on your computer.

Create a new project and save it in the folder “…\Lab\Lab 5\Lab5_prj”. Name it as Lab5_prj.

2.    Click the Project tab on the ribbon. In the list oftabs on the left, click Licensing. Then click Configure your licensing options.

3.    In the Licensing dialogue box, select 3D Analyst and Spatial Analyst. Click OK.

4.    You need to restart ArcGIS Pro to enable the 3D Analyst and Spatial Analyst extensions. Restart ArcGIS Pro and open Lab5_prj.

5.2 Generate Distance Surfaces

5.2.1 Euclidean distance analysis

In this exercise, we will calculate the Euclidean distance to the nearest train station from any point within Glasgow. We will use the Euclidean Distance tool in the Spatial Analyst toolbox.

The source identifies the location of the objects of interest, such as wells, shopping malls, roads, and forest stands. If the source is a raster, it must contain only the values of the source cells, while other cells must be NoData. If the source is a feature, it will internally be transformed into a raster when you run the tool.

Euclidean distance is calculated from the centre of the source cell to the centre of each of the surrounding cells. Conceptually, the Euclidean algorithm works as follows: for each cell, the distance to each source cell is determined by calculating the hypotenuse with x_max andy_max as the other two legs of the triangle. This calculation derives the true Euclidean distance, rather than the cell distance. The shortest distance to a source is determined, and if it is less than the specified maximum distance, the value is assigned to the cell location on the output raster.

Set the geoprocessing environment for raster analysis

Environmental settings affect how geoprocessing is carried out by tools in the current project. You’ll set the cell size of raster datasets you create to 50 m, and you’ll use Glasgow boundary as the default mask.

1.    On the Analysis tab, click Environments.

2.    In the Environments settings for the Raster Analysis category, type 50 for Cell Size, and select SG_SIMD_2020_Glasgow for the default Extent and Mask.

3.    Click OK.

Calculate Euclidean distance

1.    Add data.

In the Contents pane, turn off all the layers. Add the following two datasets from “…\Lab\Lab 1\Data\Lab1.gdb” to the Map view (You can change the symbols if you like):

NS_RailwayStation_Glasgow

SG_SIMD_2020_Glasgows

2.    On the Analysis ribbon tab, in the Geoprocessing group, click Tools.

3.    This will open the Geoprocessing pane.

4.    In the Geoprocessing pane, click the Toolboxes tab.

Browse to Spatial Analyst ToolsDistanceLegacy.

5.    In the Legacy toolset, click Euclidean Distance.

The Euclidean Distance tool opens in the

Geoprocessing pane.

6.    On the Euclidean Distance tool, click the Input raster

or feature source data drop-down arrow and click NS_RailwayStation_Glasgow.

7.    Change the default Output distance raster name

to DistanceToRailwayStation (saved in “…\Lab\Lab 5\Lab5_prj\Lab5_prj.gdb”).

8.    Set the Output cell size 50 m.

9.    At the bottom of the Geoprocessing pane, click Run .

The output values for the Euclidean distance raster are floating-point distance values. If the cell is at an equal distance to two or more railway stations, the cell is assigned to the station that is first encountered in the scanning process. You cannot control this scanning process.

10. On the Quick Access Toolbar, click Save to save the project.

5.2.2 Euclidean allocation analysis

We can use Euclidean Allocation tool to assign space to objects such as identifying the customers served by a group of stores. In the example below, the Euclidean Allocation tool has identified the railway station that is closest to each cell. This could be valuable information if you needed to get to the nearest railway station from a remote location.

1.    In the Geoprocessing pane, click the Toolboxes tab.

Browse to Spatial Analyst ToolsDistanceLegacy.

2.    In the Legacy toolset, click Euclidean Allocation.

The Euclidean Allocation tool opens in the

Geoprocessing pane.

3.    On the Euclidean Allocation tool, click the Input raster or feature source data drop-down arrow and

click NS_RailwayStation_Glasgow.

4.    Change the default Output distance raster name to RailwayStation_Allocation (saved in …\Lab\Lab 5\Lab5_prj\Lab5_prj.gdb”).

5.    Set the Output cell size 50 m.

6.    At the bottom of the Geoprocessing pane, click Run .

Every cell in the output raster is assigned the value (OBJECTID in this case) of the railway

station to which it is closest, as determined by the Euclidean distance algorithm. Each cell in an allocation receives the value (OBJECTID in this case) of the zone to which it will be allocated.

7.    On the Quick Access Toolbar, click Save to save the project.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图