代做CSSE6400 CoughOverflow Software Architecture Semester 1, 2025代写Python编程

CSSE6400

CoughOverflow

Software Architecture

Semester 1, 2025

Summary

In this assignment, you will demonstrate your ability to design, implement, and deploy a web API that can process a high load, i.e. a scalable application. You are to deploy an API to analyse images of saliva samples to identify if a patient has COVID-19 or avian influenza (H5N1), which is commonly called bird flu. Specially your application needs to support:

• Analysing an image received via an API request.

•  Providing access to a specified REST API, e.g. for use by front-end interfaces and other applications.

•  Remaining responsive while analysing images.

Your service will be deployed to AWS and will undergo automated correctness and load-testing to ensure it meets the requirements.

1 Introduction

For this assignment, you are working for CoughOverflow, a new UQ start-up.  CoughOverflow uses ma- chine learning techniques developed by QDHeC to analyse images of saliva samples. The analysis is able to identify if an individual is infected with one of a few pathogens. The initial service focuses on identifi- cation of COVID-19 or H5N1, due to their current level of risk to the public.

Task CoughOverflow uses a microservices architecture to implement their analysis platform. The CTO saw on your resume that you are taking Software Architecture and has assigned you to design and imple- ment the pathogen analysis service. This service must scale to cope with the anticipated large number of tests.

Requirements Automated identification of pathogens is an important service.  Manual testing by lab technicians is labour intensive and time consuming.  Automated tests free lab technicians for more im- portant work, and provide faster responses to healthcare staff. This is critical in an epidemic or pandemic scenario, when tens or hundreds of thousands of tests need to be performed daily.

CoughOverflow’s pathogen analysis service (PAS) needs to be designed to scale to match demand. Pathology labs will obtain saliva samples from patients.  The labs will create images of the cells in the samples. These images will be sent to the PAS for analysis.

The algorithms used to analyse the images are computationally intensive.  It is not possible to return a result immediately for a submitted image.  Labs, or other healthcare providers, will need to query the PAS to obtain results at a later time. Results can be queried for a single test, or a batch of tests for a lab or patient.

As COVID-19 and H5N1 are potentially life threatening to some patients, the service must be able to provide test results in a timely manner. Early treatment and effective isolation practices can significantly reduce the impacts of these diseases, as well as reducing strain on healthcare resources.

Persistence is an important characteristic of the platform.  Resubmitting analysis requests due to lost data would place unnecessary strain on pathology labs, at times when they may be under extreme pressure to deliver results.  Upon receiving an analysis request, and after error checking, the PAS must guarantee that the data has been saved to persistent storage before returning a success response.

2 Interface

As you are operating in a microservices context, other service providers have been given an API specifi- cation for your service. They have been developing their services based on this specification so you must match it exactly.

The interface specification is available to all service owners online:

https://csse6400.uqcloud.net/assessment/coughoverflow

3    Implementation

The following constraints apply to the implementation of your assignment solution.

3.1    Analysis Engine

You have been provided with a command line tool called overflowengine that must be used to analyse sample images. This tool was developed by AI and medical researchers at QDHeC. The tool has varying performance, due to how clear the pathogen markers are in the cell sample images. You will have to work around this bottleneck in the design and development of the PAS.

Your service must utilise the overflowengine command line tool provided for this assignment. The compiled binaries are available in the tool’s GitHub repository:

https://github.com/CSSE6400/CoughOverflow-Engine.

Warning

You are not allowed to reimplement or modify this tool.

The analysis engine requires pre-processing of cell sample images to highlight pathogen markers. This pre-processing is done by the pathology labs.  For testing purposes, you must use the sample images provided in the analysis engine’s repository. If you try to generate your own images, they are likely to fail analysis or give false results.

3.2    AWS Services

Please make note of the AWS services that you can use in the AWS Learner Lab, and the limitations that are placed on the usage of these services. To view this page you need to be logged in to yourAWS Learner Lab environment and have a lab open.

3.3 External Services

You may not use services or products from outside of theAWS Learner Lab environment. For example, you may not host instancesofthe overflowengine command line tool on another cloud platform (e.g. Google Cloud).

You may not use services or products that run on AWS infrastructure external to your Learner Lab environment. For example, you may not deploy a third-party product like MongoDB Atlas on AWS and then use it from your service.

You may not deploy machine learning or GPU backed services.

4    Submission

This assignment has three submissions.

1. April 4th – API Functionality

2.  April 17th – Deployed to Cloud

3.  May 9th – Scalable Application

All submissions are due at 15:00 on the specified date. Your solution for each submission must be com- mitted and pushed to the GitHub repository specified in Section 4.3.

Each submission isto be in its own branch. You must use the branch names exactly as indicated below. Failure to use these branch names may result in your submission not being marked, and you obtaining a grade of 0 for the submission.

stage-1 for API Functionality, due on April 4th

stage-2 for Deployed to Cloud, due on April 17th

stage-3 for Scalable Application, due on May 9th

When marking a stage, we will checkout the branch for that stage.  Any code in the main branch or any other branch, will be ignored when marking. We will checkout the latest commit in the branch being marked. If the commit date and time is after the submission deadline, late penalties will be applied, unless you have an extension. Late penalties are described in the course profile.

Note: Experience has shown that the large majority of students who make a late submission, lose more marks from the late penalty than they gain from any improvements they make to their solution. We strongly encourage you to submit your work on-time.

You should commit and push your work to your repository regularly.  If a misconduct case is raised about your submission, a history of regular progress on the assignment through a series of commits could support your argument that the work was your own.

Extension requests must be made prior to the submission deadline via my.UQ.

Your repository must contain everything required to successfully deploy your application.

4.1    API Functionality Submission

Your first submission must include all of the following in your repository:

•  Docker image (Dockerfile) of your implementation of the service API, including the source code and a mechanism to build and run the service.

• A local . sh script. that can be used to build and run your service locally. This script. must be in the root directory of your repository. The local . sh script must launch your container with port 8080 being passed from the container to the testing environment, and your service must be available at http://localhost:8080/.

We will run a suite of tests against your API at this URL.

4.2    Deployed to Cloud & Scalability Submissions

The second and third submissions must include all of the following in your repository:

• Your implementation of the service API, including the source code and a mechanism to build the service.

• Terraform. code that provisions your service in a fresh AWS environment.

• A deploy . sh script. that uses your Terraform code to deploy your application.  This script. must be in the root directory of your repository.  This script may perform other tasks as required by your implementation.

When deploying your second and third submissions to mark, we will follow reproducible steps, outlined below. You may re-create the process yourself.

1. Your Git repository will be cloned locally. The submission branch will be checked out.

2. AWS credentials will be copied into your repository in the root directory, in a file called credentials.

3. The script. deploy . sh in the root directory will be run.

4. The deploy. sh script. must create a file named api. txt, which contains the URL at which your API is deployed, e.g. http://my-api. com/ or http://123.231.213.012/.

5. We will run automated functionality and load-testing on the URL provided in the api . txt file.

Important Note: Ensure your service does not exceed the resource limits of AWS Learner Labs. For exam- ple, AWS will deactivate your account if more than fifteen EC2 instances are running. If you use up your allocated budget in the Learner Lab, you will not be able to run any services.

4.3    GitHub Repository

You will be provisioned with a private repository on GitHub for this assignment, via GitHub Classroom. You must click on the link below and associate your GitHub username with your UQ student ID in the Classroom.

https://classroom.github.com/a/o7GwUHX6

Associating your GitHub username with another student’s ID, or getting someone else to associate their GitHub username with your student ID, is academic misconduct.

If for some reason you have accidentally associated your GitHub username with the wrong student ID, contact the course staff as soon as possible.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图