代做Stock Return Regression调试Python程序

The questions below should be carried out in Python or R. You’ll need to use the Excel attached for   question    III.   Submissions    are    evaluated   based    on   correctness,    analytical   thinking, documentation, structure and clarity of the code/model, as well as the style. of the output and data visualization. Please state all your assumptions that you’d like us to consider.

I.    Stock Return Regression

Load info.txt and performance.csv into Python or R. The file performance.csv has columns ID, Date, and Performance, which are monthly returns for each instrument identified by ID and each Date since January 1, 1990. The file info.txt has static information about each instrument identified by ID, including Name, Currency, and (Geographic) Focus.

a).  Join input files performance.csv and info.txt, and produce a data frame with Date, Index1, Index2, Index3 and Stock A. The values are monthly returns.

b).  Split the dataset into training and testing per 80/20 split. Use the training dataset, regress the Stock A returns against all 3 indices together, and interpret the results. Please set seed to make reproducible outputs.

c).  What might be the potential problems with this regression, and how to identify the problems?

d).  Use Lasso model to re-run the regression. Interpret the new coefficients, and explain why it’s different from the results from linear regression.

e).  Use the fitted models from b) and d), predict Stock A returns in testing dataset, and plot the fitted values against the actual values. Which model provides a better fit, and what metric do you use to measure the fitness?

II.   Optimal Investing

a).  Download stock price data for 10+ equities from free online sources.

b).  Use  these  stocks  to  compute  a  mean-variance  efficient  frontier.  While  mean-variance optimization is built into a lot of software packages, using a generic optimization package with the correct objective function and constraints is preferred here. How did you compute the expected return for each stock? The covariance matrix? What start/end date did you use for the return series? What frequency are the returns?   Visualize the covariance matrix. Report all the expected returns and covariances as annualized quantities.

c).  Explain what the efficient frontier means. Which portfolio would you invest in and why?

d).  Add short-sale constraints and plot the constrained efficient frontier together with the one from

b). Explain any differences you see.

e).  If you wanted to invest in 200 equities, explain any difficulties in computing the covariance matrix and how these can be overcome.

III.     Case Study - See attached Excel

This is an open-ended case study. We ask that you make assumptions where you see fit and specify all assumptions made in the sheet. Don't stress it - we know you may not be an expert in private markets, so it's ok if it isn't perfect. We kindly ask that you just do what you can to the best of your ability.

IV. Correlated Contribution Times

Say you invest in a PE fund that will invest your commitment equally in  10 companies.  Ignore management fees.  Let τ1, . . ., τ10   denote the time when each company is purchased.

a).  Assume τi ~iid exp(λ) for λ = 1/2.5. Simulate the contributions for one fund. Plot the cumulative contributions. What is the interpretation of λ?

b).  Now simulate 100 funds and compute the average cumulative contribution curve. Plot it. What is this curve?

c).  In practice, contribution times may be dependent.  If I find one excellent company to buy, it’s more likely that I will soon find another excellent company to purchase.  Find a model that will allow you to simulate dependent contribution times.   Describe the model and the intuition behind the dependence. How did you set the parameters?  Simulate one fund and plot it.

d).  Simulate  100  funds  and compute the average cumulative contribution curve.   How  does  it differ from b)?

e).  For the  models in a) and c), compute the maximum contribution in any one calendar year across many simulations. Plot the distribution of the maximum. LPs need to hold cash in order to meet these contributions.  Under which model does the client need to hold less cash?


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图