代写COMP3670 / COMP6670: Introduction to Machine Learning Semester 2, 2025代做Prolog

COMP3670 / COMP6670: Introduction to Machine Learning

Semester 2, 2025

Tutorial Week 2

In the lecture slides, the following table of derivatives of common functions are given.

The following useful rules are given, assuming g, h are differentiable functions.

• If f(x) = g(x) + h(x), then f'(x) = g'(x) + h'(x).

• If f(x) = g(x) − h(x), then f'(x) = g'(x) − h'(x).

• If f(x) = c · g(x) where c is a constant, then f'(x) = c · g'(x).

• (product rule) If f(x) = g(x) · h(x), then

f'(x) = g(x) · h'(x) + g'(x) · h(x).


• (quotient rule) If f(x) = h(x)/g(x), when h(x) ≠ 0, we have:

• (chain rule) If f(x) = g(h(x)), then

f'(x) = g'(h(x)) · h'(x).

Question 1      Making sense of parameters of a hypothesis class

In a supervised learning task, each datapoint represents a second-hand tablet. The features are the phone’s capacity (x1) and age (x2), while the label is its price. A linear model is used:

y = θ0 + θ1x1 + θ2x2 .

What signs do you expect for θ0, θ1 and θ2? Justify your answer.

Question 2      Formal definition of derivative

Compute the derivative of f : R → R, f(x) = x3 by using the formal limit definition of the derivative.

Question 3      Differentiation using table and rules

By using the table and rules provided at the beginning of this document, compute the derivatives of the following functions:

(a) f(x) = e2x

(b) f(x) = (2x + 1)e2x

(c) f(x) = 1+x3/x2

Question 4      Local minima, local maxima, or neither?

Let f(x) = 2x3 − 21x2 + 60x + 4.

(a) Compute f'(x), and verify that f'(5) = 0.

(b) Factorize f'(x).

(c) Without plotting the graph of f, determine whether x = 5 is a local minima of f, a local maxima of f, or neither.

Question 5      Computing the gradient of a multi-dimensional function

Let f(x1, x2, x3) = (x1)2e2x2 lnx3. Compute ∇f(x1, x2, x3).

Question 6      Gradient descent and step sizes

In the lecture, we gave an example of gradient descent on the function f(x) = x2.

(a) For any step size λ, write down the explicit gradient descent update rule.

(b) Using part (a), explain what will happen when

(i) 0 < λ < 1

(ii) λ = 1

(iii) λ > 1




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图