代做Modelling and Analysis代写Matlab语言

Modelling and Analysis

As a new graduate, you have recently started your first employment with the industrial giant, Mitsubishi Chemical. Mitsubishi is committed to sustainability through their KEITEKI principles, and have a far-reaching vision is to produce platform chemicals from renewable feedstocks. As such, Mitsubishi has sourced a renewable supply of isobutyraldehyde from the emerging sustainable aviation fuel industry, where the isobutyraldehyde is produced via the gasification of biomass. This renewable supply of isobutyraldehyde needs to be oxidised to isobutyric acid using a novel isothermal enzyme reactor pioneered by Mitsubishi.

Figure 1 - Isothermal enzyme reactor for the sustainable production of isobutyric acid from renewable isobutyraldehyde.

The slurry reactor is aerated with air to ensure the availability of excess O2 (A) (Figure 1), uniformly suspending a whole-cell solid  catalyst within the variable  reactor volume. The whole-cell catalyst contains an engineered P450 enzyme with a high kinetic rate for oxidising isobutyraldehyde to isobutyric acid at ambient operating temperature.

Reaction 1 represents the enzyme-catalysed oxidation of isobutyraldehyde (B) to isobutyric acid (P), simplified to equation 2 for ease of notation.

At this early stage of sustainable process development, the Department has minimal insight into the model structure of the kinetic rate equation. Table 1 details the representative process parameters the Department have used in their scale-down experiments in their laboratory.

Table 1 - Process parameters for the isothermal enzyme reactor (Figure 1).

Description

Value

Engineering Unit

Concentrated isobutyraldehyde feed (Cb1)

24.9

[mol·dm-3]

Dilute isobutyraldehyde feed (Cb2)

0.1

[mol·dm-3]

Further facilitating the scale-down experiments in the lab, the Department has normalised the feeds to the enzyme reactor’s cross-sectional area. The constant manipulated variables and the initial condition are detailed in Table 2.

Table 2 - Initial condition for laboratory experiments and constant manipulated variable flow rates.

Initial condition

Unit

Value

State variables

h

[dm]

40

CB

[mol·dm3]

0.1

Manipulated variables

w1

[dm·min-1]

1

w2

[dm·min-1]

1

An experienced engineer scientist in your team has derived the below ordinary differential equations to model the enzyme reactor (Figure 1), where equation 3 is the liquid volume balance and equation 4 is the species balance for isobutyraldehyde. She has kindly provided a template Simulink model (EnzymeReactor_Assignment3.slx) as a starting  point for your model parameter estimation.

Given the model structure for the reaction rate (equation 4), rb, is unknown at this early stage of process development, the Department harvested experimental time series data using the process conditions outlined in Table 2. This time series represents 54 samples taken over 100 [min] from the enzyme reactor for gas chromatography (GC) analyses  of isobutyraldehyde concentration, Cb. The GC analyses and their 95% confidence  limits are contained in the file ‘Slurry Enzyme Reactor Experimental Results.xlsx’ .  Unfortunately, the isobutyric acid concentration, Cp, could not be measured given the lab’s HPLC instrument is not operational. However, the experienced engineering scientist knows from previous experimental work that rb is only a function of Cp and Cb. Therefore, she’s asked you to derive the ODE for Cp using the stoichiometry of the reaction.

The experienced engineering scientist has tasked you to devise a neural network surrogate model for the reaction kinetics associated with the P450 enzyme catalyst. In the absence of fundamental first principles insight into the reaction mechanism, rb in equation 4 needs to be estimated using a feedforward radial basis function neural network. Avoiding overfitting, she’s advised you to minimise the number of hidden neurons to less than four. The experienced engineering scientist believes that the Cb time series contains sufficient state variable information for extracting a black box kinetic reaction rate term for equation 4. She’d like to use the resulting dynamic equations for future optimisation of the process towards maximising the techno-economics. You agree with her, and you’re confident that the integration of ODEs with artificial intelligence will make the most of the available experimental data.

Deliverables

Submit a single report as your individual assessment of a radial basis function neural network as a model structure for the kinetic rate equation for the slurry enzyme reactor. Underpinning your conclusion, submit:

1.   A technical report of no more than 750 words, addressing the mark scheme requirements.

2.   All Matlab Simulink files supporting your report and recommendations.

INDIVIDUAL ASSESSMENT MARK SHEET

Assignment 3 mark scheme

Simulink modelling

Systematic use of subsystems for modelling, compartmentalising the model to make the structure accessible to other engineers at Mitsubishi.

3.0

Correct modelling for the ODE for isobutyric acid and the feedforward radial basis function neural network architecture as surrogate model for the reaction kinetics.

18.0

Consideration for a suitable numerical integration algorithm.

3.0

Neural network surrogate model architecture

Demonstrated sound engineering science judgement for the selection of inputs to the neural network surrogate model.

8.0

Presented an evidenced rational for the number of radial basis function hidden neurons.

12.0

Neural network model parameter estimation

Effective normalisation of the inputs variables to the neural network.

5.0

Conducive initialisation of the weights ofthe neural network.

5.0

Selected neural network model parameters suited to exploring the solution space during optimisation.

5.0

Appreciably minimised the sum square error (SSE) between the model and experimental data using an optimisation algorithm.

5.0

Model parameter estimation outcome

Model parameter optimisation led to a representative neural network surrogate model.

8.0

Assessed the statistical significance of the model digitisation, given confidence limits of the experimental results.

5.0

Evaluated the robustness of interpolation and extrapolation with respect to alternate w1 and w2.

8.0

Technical Writing

Discussion on selected neural network architecture.

5.0

Discussion on optimisation of neural network model parameters, reflecting on how representative and robust the surrogate model is.

5.0

Technical report structure aligned with formal scientific report format.

5.0



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图