代写FIT5147 Data Exploration and Visualisation Semester 1, 2025 Programming Exercise 2调试Haskell程序

FIT5147 Data Exploration and Visualisation

Semester 1, 2025

Programming Exercise 2: R (5%)

1. Due Date

Wednesday 9 April,  4:30 PM

2. Brief

In this assignment you will demonstrate your capability in creating an interactive visualisation page with simple narrative elements using R Shiny. It is an individual assignment and worth 5% of your total mark for FIT5147.

Relevant learning outcomes for FIT5147

1.   Perform. exploratory data analysis using a range of visualisation tools;

2.   Critically evaluate and interpret a data visualisation;

3.   Choose an appropriate data visualisation;

4.   Implement interactive data visualisations using R and other tools.

3. Details of Task

3.1 Dataset

The data set used in this assignment is based on the AusStage online resource. We introduced this dataset in the Week 1 Workshop and Programming Exercise 1 but have prepared a specific data file for this assignment. This data was initially gathered on 28 February 2025.

To enhance your understanding of the context and metadata, you can check the data source link: https://www.ausstage.edu.au/pages/learn/search-ausstage . Using the various interactive tools for the data source of the full dataset may help enrich your visual analysis. If you discuss or replicate the visualisations or metadata provided by AusStage, be sure to reference these correctly in your report.

We have wrangled the data for this assignment, so you must use the data that we provide on Moodle. This is different from the PE1 data. The name of the data set is AusStage_S12025PE2.csv.  It contains fewer rows, different columns and it is restructured for the ease of the assignment. You may further wrangle the data if you wish.

For this PE2 assignment, the data set provides information about events performed in the State of Victoria. In this activity we will explore the use of a few attributes:

Column

Description

Event Identifier

A unique number identifying an event in AusStage.

Event Name

The title or name of an event.

First Year

The year of the event's first public presentation, including previews

Last Year

The year of the event's final public presentation.

Primary Genre

The kind of event, as defined by its main mode of performance.

Venue Identifier

A unique number identifying the venue where an event happens.

Venue Name

The name of the venue where an event happens.

Suburb

The suburb or local district where the event happens.

Longitude

Geographical Location (longitude) of the venue

Latitude

Geographical Location  (latitude) of the venue

Table 1: Fields of the “AusStage_S12025PE2” data set.

References: AusStage. (n.d.). AusStage: About. AusStage. Retrieved February 27, 2025, from

http://www.ausstage.edu.au/pages/learn/about

3.2 Design Brief

The task is to use R Shiny, ggplot2, and Leaflet to create a data visualisation page using the provided dataset and following a specified layout mockup and design requirements.

For this assignment, you will need to create two visualisations: VIS1 and MAP, combined into one layout.

The mock-up shown in Figure 1 shows the expected layout of the visualisation page; and the expected content in each section. In order to create this layout you are expected to use a fixedPage (not a fluidPage) layout and are expected to position the visualisation elements in an appropriate number of rows and columns.

Figure 1. Mock–up showing the approximate position for your two visualisations (Vis 1 and Map) and two descriptions.  Word counts are approximate.

3.3 VIS 1

For this assignment, this visualisation should be static (not interactive) with the following requirements:

1. VIS 1 should show the top 10 most commonly used venues of events according to the number of Event_Identifier values for each Venue_Name value. The visualisation must show the magnitude of the usage for each venue. Order your VIS 1 from most events to least events.

2.  The visualisation must show the breakdown of the Primary_Genre values for each venue, using a suitable visual variable of your choice.

3.  VIS 1 must be created using ggplot2.

3.4 MAP

For the map component, you  create an interactive proportional symbol map using Leaflet. You must follow the following requirements:

1.   Plot the venues on your map using circle markers or equivalent, with the following data mappings and design aspects:

a. Each symbol on the map is for a separate Primary_Genre.

b. Colour should be mapped to Primary_Genre. You can choose an appropriate colour palette for the type of data.

c. Radius should be mapped to the number of events for that genre at that venue (you may need to scale the size so as to reduce the data  overlap on the map, or use opacity, but some overlap is expected)

d.   Provide a colour legend for your map.

2.   Implement the following interactive features:

a.   Provide a tooltip for each circle marker on mouse hover-over that

shows the name of the venue, the suburb, the genre, and the number of events for that genre.

b.  Add a numerical slider (a slider to set a maximum and minimum value) for filtering how many years back the events occurred. By default, all venues should be shown on the map, i.e., the sliders’ settings should be equal to the maximum and minimum available values. The slider should state which years will be plotted on the map.

3.5 Data Visualisation Narrative

1)  Provide a descriptive title for your visualisation.

2)  The descriptive text in the description boxes should both describe and

interpret the related visualisations. They should help the viewer see some data insights you have identified, especially when using the interactive features.

3)   Information on the original (not the file we are using, but the one it is adapted from) data source should be provided for all data visualisations. In the relevant layout location (see Figure 1) briefly provide information about the original data source, including the:

a)   name of the data;

b)  URL to the data;

c)   name of the licensor;

d)  date of the version of the original data used for the visualisation.

3.6 Reflection

Using the provided template, write a brief justification and reflection of your completed visualisation based on the visualisation and visual analytics theory you have learnt in the unit so far. This should include justification of your choice of visualisation, choice of visual variable/s, and a reflection on your visualisation layout and typography. As shown in the template, this needs to be completed for each of the two components: VIS 1 and MAP.

Notes

1.  You should avoid explicitly hard coding any of the data such as lists of genre categories or years.

2.   Minimise the amount of data processing done by the server code when it reacts to new user interactions.

3.  The word counts are a guide. For this textual content we are looking for concise descriptions.

4.  The text descriptions are to help your visualisation reader see what you see in the data visualisations, i.e., tell the data story. The reflection is to help your markers understand your design choices using the data visualisation theory and practice taught so far (Weeks 1 to 5).

5.  The design choices for VIS 1 and MAP will be included in the evaluation of your work. Make sure you meet the requirements of the assignment, choose any visual elements wisely and try to ensure each component of the layout, including typography, can be justified.

6.  Whilst a map legend is usually expected for all map elements, a legend for the size of the proportional symbols on the map is not a requirement for this assignment. (You may provide one if you wish for completeness.)

7.   No data checking or cleaning is required, but you may need to perform data transformations. You could use an R package such as dplyr

(https://dplyr.tidyverse.org/) for this purpose, but it is not a requirement.

8.  You may find these settings useful for creating your map (feel free to adapt them for your map needs and design choices): Centre point of latitude

-37.8162, longitude 144.962, zoom level 12 and map provider CartoDB.Positron.

9.  Whilst there are no requirements on the use of specific colour palettes for this assignment, appropriate use of colour is essential and choice of visual variable should be justified. We recommend the use of ColorBrewer palettes:

(https://ggplot2.tidyverse.org/reference/scale_brewer.html).

10. The text for your description text boxes, titles and any visualisation element content should be easy to read. Choose a clear font and appropriate font size for your submission and be sure to check your grammar and spelling.

11. Your reflection and code is run through academic integrity checks. No collusion between students is permitted and any text or R code that is largely based on any third party code must cite the original source in comments within the R scripts(s) (or as a reference, or footnote in your reflection), including webpages or social media messages. Otherwise your work may be considered to be plagiarising the code of others. No code provided by generative AI can be used in this work. No part or description of this assessment task may be input   into a generative AI system.

4. Assessment Resources

See the Assessments section on Moodle for the:

-     Data: AusStage_S12025PE2.csv

-     Reflection Template: PE2_reflection_template_S12025.docx

5. Assessment Criteria

The following outlines the criteria which you will be assessed against.

Demonstrate the ability to read in and manage data effectively using R [0.5%]

●   Demonstrate the ability to create static visualisations in R using ggplot2 [1%]

●   Demonstrate the ability to create a data map in R with Leaflet [1%]

●   Demonstrate the ability to create an interactive visualisation in R with Shiny [1.5%]

●   Demonstrate the ability to justify and critically reflect on interactive and static data visualisations [1%]

6. How to Submit

Submit two files:

A PDF file containing the justification and reflection. This reflection must use the template provided. Name the PDF file in this format:

PE2_[LAST NAME]_[STUDENT ID].pdf.

A ZIP file containing all files required to run your Shiny application. Name the ZIP file in this format:

PE2_[LAST NAME]_[STUDENT ID].zip.

Before submitting your assignment, double check that your Shiny application runs correctly. To do so, clear objects from the workspace by clicking on the “Broomstick” icon on the top-right section of RStudio. Afterwards, make sure your application is still working by clicking the “Run App” button on RStudio.

The files that you need to include in your ZIP submission are:

The one dataset supplied for this assignment

R script(s) for the final Shiny application (you can use a single R script, or two scripts for UI and Server)

o   Have all required "library(xxx)" or "require(xxx)" statements at the beginning of your R files (you do not need the code to install the    packages)

o   Use relative paths when reading your dataset (do not use absolute paths that refer to specific drives)

Do not include your PDF file in your ZIP file.

7. Report Word Limitations and Late Penalty

The reflective report is expected to have approximately 100 to 200 words per section, totaling approximately 500 words. The supplied template must be used.

As per Monash policy: All late submissions will receive a penalty of 5% per day (0.25 marks per day out of a total of 5 marks) late inclusive, including weekends. Work submitted more than seven days after the due date will not be marked.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图