代做ME-UY 3811 Scanning Electron Microscopy帮做R程序

ME-UY 3811

Scanning Electron Microscopy

1. Objective

Continuation of the sample preparation and Tensile test lab.

Become familiar with the concept of electron microscopy.

Understand the procedures in preparation of samples for electron microscopy.

2. Background

This lab session is basically a demonstration of the scanning electron microscope (SEM) and its applications in failure analysis, fractography and materials research. The  SEM is a unique instrument for analyzing surfaces. The instrument is a combination of electron-optical, vacuum, and electronic control devices. The basic components of the SEM are illustrated in Figure 1. Electrons are generated from an electron gun at the top of the column and accelerated in a constant stream down the column. The electrons are directed toward the specimen which is located in the lower part of the column and there are focused by a  system of electromagnetic lenses into a small spot. The size of this spot mainly determines the resolution. A general rule is that smaller spot sizes always produce higher resolution images.

Figure 1. Essential Components of a Scanning Electron Microscope

2.1 Mechanism of SEM

In a typical SEM, an electron beam is thermionically emitted from an electron gun fitted with a tungsten filament cathode. Tungsten is normally used in thermionic electron guns because it has the highest melting point and lowest vapor pressure of all metals, thereby allowing it to be electrically heated for electron emission, and because of its low cost. Other types of electron emitters include lanthanum hexaboride (LaB6) cathodes, which can be used in a standard tungsten filament SEM if the vacuum system is upgraded or field emission guns (FEG), which may be of the cold-cathode type using tungsten single crystal emitters or the thermally assisted Schottky type, that use emitters of zirconium oxide.

The electron beam, which typically has an energy ranging from 0.2 keV to 40 keV, is focused by one or two condenser lenses to a spot about 0.4 nm to 5 nm in diameter. The beam passes through pairs of scanning coils or pairs of deflector plates in the electron column, typically in the final lens, which deflect the beam in the x and y axes so that it scans in a raster fashion over a rectangular area of the sample surface.

When the primary electron beam interacts with the sample, the electrons lose energy by repeated random scattering  and  absorption  within  a  teardrop-shaped  volume  of the  specimen  known  as  the  interaction volume, which extends from less than  100  nm to approximately 5 µm into the surface. The size of the interaction volume depends on the electron's landing energy, the atomic number of the specimen and the specimen's density. The energy exchange between the electron beam and the sample results in the reflection of high-energy electrons by elastic scattering, emission of secondary electrons by inelastic scattering and the emission of electromagnetic radiation, each of which can be detected by  specialized detectors. The beam current absorbed by the specimen can also be detected and used to create images of the distribution of specimen current.

Electronic amplifiers of various types are used to amplify the signals, which are displayed as variations in brightness on a computer monitor (or, for vintage models, on a cathode ray tube). Each pixel of computer video memory is synchronized with the position of the beam on the specimen in the microscope, and the resulting image is therefore a distribution map of the intensity of the signal being emitted from the scanned area of the specimen. In older microscopes images may be captured by photography from a high-resolution cathode ray tube, but in modern machines they are digitized and saved as digital images.

Low-temperature SEM magnification series for a snow crystal. The crystals are captured, stored, and sputter-coated with platinum at cryogenic temperatures for imaging.

Figure 2. Mechanisms of emission of secondary electrons(SE), backscattered electrons(BSE), & characteristic X-rays from atoms of the sample

Magnification in a SEM can be controlled over a range of about 6 orders of magnitude from about 10 to 500,000 times. Unlike optical and transmission electron microscopes, image magnification in an SEM is not a function of the power of the objective lens. SEMs may have condenser and objective lenses, but their function is to focus the beam to a spot, and not to image the specimen. Provided the electron gun can generate a beam with sufficiently small diameter, a SEM could in principle work entirely without condenser or objective lenses, although it might not be very versatile or achieve very high resolution.

In an SEM, as in scanning probe microscopy, magnification results from the ratio of the dimensions of the raster on the specimen and the raster on the display device. Assuming that the display screen has a fixed size, higher magnification results from reducing the size of the raster on the specimen, and vice versa. Magnification  is  therefore  controlled by the  current  supplied to the x, y scanning coils, or the voltage supplied to the x, y deflector plates, and not by objective lens power.

In addition, there are a number of useful signals generated by the interaction of the incident electron beam with the specimen(backscattered electrons, secondary electrons, x-rays, etc.) and devices used to detect or collect  the  signals.  This  capability  makes  the  SEM  a  unique  analytical  tool.  The determination  of the mechanism  causing  fracture  is  normally  accomplished  by  examination  of the  fracture  surface  at  high magnification, usually in the scanning electron microscope (SEM).

2.2 Principles of ductile failure analysis

Fracture is described in various ways depending on the behavior. of material under stress upon the mechanism of fracture or even its appearance. Macroscale examination will provide information indicating whether the fracture is ductile or brittle on the macroscale, and it almost always identifies the fracture-initiation site. Ductile fracture is characterized by tearing of  metal and significant plastic deformation which is associated with high energy absorption while brittle fracture with lower  energy absorption. Figure 3 shows the features of ductile fracture and brittle fracture. Ductile fracture has dimpled, cup and cone fracture appearance.

Figure 3. (a) Ductile cup-and-cone fracture with necking in a tensile, (b) Brittle fracture


If a necked, but not fractured tensile specimen, is sectioned longitudinally, it is apparent that crack initiation started along the centerline of the specimen on a plane macroscopically normal to the applied load, initially growing outward in a radial direction (Figure 3). Failure could then initiate at any point anyplace in the specimen. Once necking initiates in the specimen, the stress distribution is no longer constant along the length or across the cross section. After some growth in the transverse plane, the crack turns and runs on a plane  of maximum  shear  stress.  Progressive crack growth leads to the familiar cup-and-cone  fracture associated with fracture of ductile cylindrical specimens (Figure 4). The macroscopic appearance of the fracture surface is characterized by a central fibrous zone, a region containing ridge marks and a shear zone. A third feature that also indicates crack growth direction can be described as a river pattern which is formed by a ductile process. However, in addition the term ridged pattern is used to describe surface waviness that is created by microstructural features. Ridge marks point back to the crack-initiation site and are an important feature for determining these sites. Ridge marks are usually visible without magnification.


Figure 4. Schematic of ductile fracture by void coalescence

Figure 5. Ridge pattern is visible on the fracture surface of a material that shows limited ductility during fracture. The marks point back to the crack-initiation site

Figure 6. Dimple rupture. Note the variation in dimple size associated with the variation in crystal size in the dimples

High-magnification examination of the fracture surface reveals dimple shape (Figure 6). Dimple shape can eliminate  some  possible  loading  conditions  and  indicate  the  direction  of  crack  propagation.  For  axial loading, the dimples formed around the second phases are circular. For shear and bend loading, they are elongated and open on one end (parabolic shape).

2.3 Principles of brittle failure analysis

Brittle fracture is characterized by rapid crack propagation with low energy release and without significant plastic deformation. Brittle metals experience little or no plastic deformation prior to fracture. The fracture may  have  a  bright  granular  appearance.  Brittle  fracture  displays  either cleavage (transgranular)  or intergranular fracture. This depends upon whether the grain boundaries are stronger or weaker than the grains. This type of fracture is associated with nonmetals such as glass, concrete and thermosetting plastics. In metals, brittle fracture occurs mainly when BCC and HCP crystals are present.

It has been proposed that the pattern is developed where there is ‘rapid’ crack propagation. When cracks propagate faster in the interior of a section than at the surface by a brittle mechanism, the result is chevrons (Figure 7). When crack propagation is faster at the surface than at the interior, only one side of the ‘V’is present, and the feature is the set of radial lines. Both ridge patterns formed by ductile processes and radial patterns (brittle) are visible with the naked eye.

Figure 7. Chevrons. The ‘V’ of the chevron points back to the crack-initiation site.

Cleavage in this idealized case occurs on a single  macroscale plane, but the fracture plane changes orientation on the microscale as the crack propagates across grain boundaries. Different fracture-surface morphologies are observed depending on the orientation relation ship between two grains. Often, when a propagating cleavage crack crosses a grain boundary, there is usually nucleation on multiple planes in the new grain. These cracks subsequently coalesce as the crack propagates, creating a characteristic feature known as a river pattern (Figure 8).

Coalescence of the multiple cracks “down river” indicates the crack-propagation direction. Microscale river patterns, like macroscale radial and chevron patterns, point back to the crack initiation site. Commercial polycrystalline alloys contain second phases and inclusions of varying shape and deformability as well as lamellar structures. These microstructural constituents provide additional mechanisms of crack initiation and propagation that are not present in single-phase alloys.

Figure 8. River patterns that develop during cleavage fracture. Multiple crack reinitiations occur when the propagating crack crosses a grain boundary. In (a), crack propagation is from 7 o’clock to 2 o’clock. In (b) propagation is from 1 o’clock to 6 o’clock. (c) Schematic showing the effect of a grain boundary to cause reinitiation of the cleavage crack. (a) and (b)

Exposure to elevated temperature implies changes in microstructure with time in service. Figure 9 shows the fracture surface of a set of steel tensile specimens broken at successively higher temperatures. At the lowest temperature, fracture is predominantly by cleavage creating a fine radial pattern as in specimen (a); there is essentially no shear lip, no reduction in area, and no fibrous zone. The specimen in (b) shows a well-developed ridged pattern, a small fibrous zone, and a small shear lip zone. There is still little reduction in area. The specimen in (c) shows a course ridged pattern, plus a greater reduction in area and a larger fibrous  zone  than  the  specimen  in  (b).  Finally,  in  specimen  (d)  the  ridge  pattern has  disappeared, the reduction in area is large, and the fracture surface consists of a central fibrous region (largest of the four specimens) and a large shear zone.

Figure 8. Fracture surface appearance of steel tensile specimens at increasing temperatures. The fracture surface consists of three zones; an inner fibrous zone nominally perpendicular to the specimen axis, a “radial” zone containing ridge structures, and a shear zone surrounding the radial zone. Depending on the temperature, the size of these zones changes and zones may disappear. There are accompanying changes in the reduction in area. (a) Tested at -160 °C (-256 °F). (b) Temperature not given. (c) 80 °C (176 °F). (d) 160 °C (320 °F).

Brittle fracture can occur in service without prior plastic deformation at the macroscale (although  the material may have been plastically deformed during fabrication) so that there is no warning that fracture is imminent. This may result in catastrophic failure. Ductile tensile overload failures typically provide some warning that failure is imminent. Proper maintenance procedures will then cause replacement of the part so that fracture is averted.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图