代写A36779 Statistical Methods in Finance and Economics代写Web开发

A36779

3SMFE 06 23062 Level H

LH Statistical Methods in Finance and Economics

3SMFE4 06 27099 Level M

LM Statistical Methods in Finance and Economics

May/June Examinations 2023-24

1. (a)  Briefly answer the following questions.                                                                                        [8]

(i)  What is the consequence of specifying a model with a variable in logarithmic form, if in the true population model, the variable is actually in its level form?

(ii)  Is a regression with a low R2  useless? Explain. What does a low R2  imply about the specified regression model?

(iii)  Suppose you have N observations on a variable with constant mean μ but a het- eroskedastic variance.  What is the heteroskedasticity-consistent (White corrected) estimate of the variance? How does it compare to the usual estimate of this variance that ignores heteroskedasticity?

(b)  True or False? Explain your decision for the following statements.                                            [6]

(i)  By including one more independent variable in the regression, you will eliminate the possibility of omitted variable bias from excluding that variable.

(ii)  The central limit theorem states that sums of random variables, properly standard- ized, converge in distribution to the standard normal distribution.

(iii)  The OLS estimators are no longer BLUE (best linear unbiased estimators) under the situation of the heteroskedasticity.

(c)  Suppose you estimate the consumption function of Yi = α1 + α2Xi + ei and the savings

function of Zi = β1+ β2Xi + ui, where Y denotes consumption, Z denotes savings, X

denotes income, α’s and β’s are parameters and e and u are the random error terms.

Furthermore, X = Y +Z, that is, income is equal to consumption plus savings, and vari-ables are all in numerical terms.                   [11]

(i)  What is the relationship, if any, between the OLS estimators of α2 and β2?  Show your calculations.

(ii)  Will the residual (error) sum of squares be the same for the two models of Yi = α1+ α2Xi+ei and Zi = β1+β2Xi+ui? Explain your answer.

(iii)  Can you compare the R2  terms of the two models? Explain your answer.

2. (a)  Consider a time series of observations, It = (y1,x1), (y2,x2), ··· , (yT ,xT ).   Given that T = 29,yT = 10,yT 1  = 12,xT+2  = xT+1  = xT = 5, and xT 1  = 6,  provide the one- period and two-period forecasts for yT+1  and yT+2, respectively for the following models. In each case, vt are assumed to be independent random errors distributed as vt ~N(0, 4).         [20]

(i)  The random walk with drift yt = 5+yt 1 +vt .

(ii)  The ARDL model yt = 6+0.6yt 1+0.3xt +0. 1xt 1vt .

(iii)  The error correction model Δyt = —0.4(yt 1 15xt 1)+0.3Δxt +vt .

(b)  Consider a time  series process of the form. yt = 2yt 1 — yt 2 + α + vt , where vt ~ N(0, σ2 ), and α is a constant. Show that this process is integrated with order two.            [5]

3. (a)  From the data for the period of the first quarter in 1971 to the fourth quarter in 1988 for Canada, the following results were obtained:

where M 1 is the most liquid part of money supply including paper and checking account

and etc., GDP refers to the gross domestic product measured in billions of Canadian dollars, ln is the natural logarithmic term andˆ(u)t represents the residuals from model (1).     [13]

(i)  Interpret the fitted regression results for model (1).

(ii)  Based on the results from models  (1) and (2), do you suspect that model (1) is spurious? Explain your answer.

(iii)  From the above results, comment on cointegration. You need to explain your answer clearly.

(iv)  Now use the same notation and consider the following model:

Comment on this model. Is model (1) spurious? Explain your answer.

(b)  What is the difference between the tests of unit roots and the tests of cointegration?              [3]

(c)  The first-difference transformation to eliminate autocorrelation assumes that the parame- ter of autocorrelation ρ is —1.  Is the statement true or false?  Briefly justify your answer.          [2]

(d)  Write down the error correction model in ARDL(1,1) format for two time series processes,

yt and xt , where yt is the dependent variable at time t. Use β to denote long-run equililib-rium parameter. Show that the model would not work if another lag of the error correction term,for example, yt —2 — βxt —2, is added to the model.           [7]

4. The following model explores the factors influencing fundraising amounts on the web platforms Indiegogo and Kickstarter.   It  includes  148  projects from 2010 to 2015, all related to social enterprise.

ln(percentage)i = β1+β2ln(goal)i+β3producti+β4photo i+β5photosqi+β6malei+β7USUKi+ei where βs are parameters, e is the error term and i stands for the i-th project. percentage rep-resents the funded amount as a ratio of the target funding value, in percentage terms, goal is the target funding value that a project aims to achieve in US dollars, product indicates whether the project involves producing a physical product (Yes=1, No=0), photo is the number of photos posted by the project initiator on the platform’s website, photosq is the square of photo, male in-dicates whether the project initiator is male (Yes=1, No=0), USUK indicates whether the project initiator is from the US or the UK (Yes=1, No=0).                                                                                 [25]

Estimation results

Signif .  codes:    0   ‘ *** ’  0 . 001   ‘ ** ’  0 . 01   ‘ * ’  0 . 05   ‘ . ’  0 .1

Results from Analysis of Variances (ANOVA)

Variance-Covariance Table

(a)  Detail the steps and calculate the values of SSR(due to regression), R2 , adjusted R2  and

the standard error of the model.                                                                                                  [3]

(b)  Detail the  steps and calculate the missing values of A, B and C in the tables on the

Estimation results and the ANOVA.                                                                                          [1.5]

(c)  Report the fitted model. You need to include the standard errors, significance level, sam-

ple size, R2  and adjusted R2 .                                                                                                   [1.5]

(d)  Detail the steps and find the marginal effects of photo on ln percentage with 8 and 20

photos posted on the website, respectively. What do the results suggest?                               [2]

(e)  Interpret the fitted model in terms of goal variables.                                                                  [1]

(f)  Is this a good model in general? Perform an appropriate test on the overall significance of

the model using α = 5%.                                                                                                         [3]

(g)  A regression of the squared residuals on the same set of explanatory variables gives

R2 = 0.043, perform an appropriate test for heteroskedasticity.                                               [3]

(h)  Assuming you still suspect heteroscedasticity exists, and the variability of the funded per-

centage are larger than those projects which produced a physical product, propose an

appropriate method to test this type of heteroscedasticity. Detail the steps.                             [3]

(i)  Find the 95% interval estimate for a nonlinear function that λ = -βphoto/(2×βphotosq)

for the lnpercentage model.                                                                                                    [7]




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图