代做CADE10002 – Lab 4 Signals and Dynamics帮做Python程序

CADE10002 – Lab 4

Signals and Dynamics

ay24421

Abstract

According to the CADE10002 Lab Guidelines and Dynamics Lab Circuit Step-by-Step Building Guide from the University of Bristol, the experimental purpose, experimental equipment, experimental methods and calculation formulas were determined. The aim of this experiment is to  estimate Young's modulus of a metal ruler by using its natural vibration frequency. The experiment involved constructing a microphone circuit with a Raspberry Pi Pico to capture sound signals, processing these signals with Python to determine frequency, and applying a theoretical model to calculate material properties. Key findings indicate that the ruler's Young's modulus approximates that of steel, around 257.305 GPa, though limitations such as errors, noise and measurement precision introduce uncertainty. The experiment successfully demonstrates a low-cost method for material property estimation, applicable in resource-limited scenarios like disaster relief.

1. Introduction

The determination of material properties, such as Young's  modulus, is critical in engineering applications, particularly in scenarios where traditional testing facilities are unavailable, such as disaster relief efforts  requiring emergency repairs. This investigation explores a cost-effective method to estimate the Young's modulus of a metal ruler by measuring its natural frequency as a cantilever oscillator. The approach leverages basic electronics and programming skills to capture and analyze time-varying sound signals produced by the vibrating ruler. Drawing from concepts introduced in Session 17, including vibrational dynamics and signal processing, the experiment aims to calculate the Young's modulus using the fundamental frequency and assess its suitability as a substitute material, for instance, in an ambulance suspension repair. The specific objectives are to construct a functional microphone circuit, acquire and process sound signals accurately, and derive a reliable estimate of the material's Young's modulus.

2. Methods

As shown in figure 1, the microphone circuit was assembled on the breadboard. Key components included a condenser microphone (CMC-9745-44P), an LM741 op-amp, resistors, capacitors, and a Raspberry Pi Pico for data acquisition. The circuit amplified the microphone's output, with a high-pass filter (C1) removing DC offset and an op-amp providing gain, while Schottky diodes (1N5817) protected the Pico's ADC pin.

Figure 1: the microphone circuit

The ruler was clamped to a table edge using a hardback book, creating a cantilever with overhang lengths of 80 mm, 100 mm, and 120 mm, as shown in figure 2. The microphone was positioned 5 cm from the ruler’s free end. DataAcquisition.py was executed in Thonny to record sound signals at 1 kHz when the ruler was 'twanged' three times per length.

Figure 2: Experimental setup for 100 mm overhang

Signal data was exported as .csv files and analyzed in Jupyterlab. The python code extracted the larger amplitude portion of the ruler vibration signal to eliminate the effect of background noise to accurately analyze the frequency.

Implementation steps:

1.    Use  Jupyterlab  to  calculate  the  mean  by  reading the  initial  noise file  (0.csv)  Estimate the amplitude of the static portion of the signal as the noise level

2.    The processed data and the initial mean value were subtracted from the parameters of the steel rule vibration respectively to obtain the data with the transverse axis of 0

3.    Set 30% of the  maximum amplitude to the threshold, retaining only signal segments whose amplitude exceeds the threshold.

4.    Find the start and end points in the signal with significant amplitude and crop the signal to extract valid data.

5.    Plot images and estimate frequencies using Jupyterlab.

Then the basic frequency of the ruler was estimated by counting the number of times the signal crosses the "zero point". Finally, equation 1, equation 2 and deformation equation 3 were used to calculate Young's modulus of steel rule.

                       [1]

where f is the fundamental frequency in Hz, E is the Young’s Modulus, I is the second moment of area, q is the mass per unit length, L the free overhang length of the cantilever.

                                 [2]

where I is the second moment of area, b is the width and h is the thickness.

                             [3]

where E is the Young’s Modulus, f is the fundamental frequency in Hz, I is the second moment of area, q is the mass per unit length, L the free overhang length of the cantilever.

3. Results

Measurements of the ruler yields a width (b) of 0.0254 m and thickness (h) of 0.0007 m. According to equation 2, the second moment of area  I  = 7.26 × 10-13 m4 . According to Davis’s paper entitled Metals Handbook Desk Edition. ASM, the density of steel is 7850 kg/m^3. And due to equation 4, the mass per unit length  q = 0.1396kg/m

[4]

where q is the mass per unit length,P   is the density, b is the width and h is the thickness

According to Jupyterlab's calculations, the initial mean is 35437.4305 (0mm overhang).

When the overhang length of the steel rule is 80mm, the original vibration signal curve is shown in Figure 3.

Figure 3: 80mm original vibration signal

The adjusted vibration signal curve of the 80mm suspension is shown in Figure 4.

Figure 4: 80mm adjusted vibration signal

The cropped effective vibration signal curve of 80mm overhang is shown in Figure 5.

Figure 5: 80mm cropped effective vibration signal

By clipping and calculating the zero-intersection using python code, the final frequency is estimated to be 104.52 Hz. Finally, using formula 3, Young's modulus is 274.31 GPa.

When the overhang length of the steel rule is 100mm, the original vibration signal curve is shown in Figure 6.

Figure 6: 100mm original vibration signal

The adjusted vibration signal curve of the 100mm suspension is shown in Figure 7.

Figure 7: 100mm adjusted vibration signal

The cropped effective vibration signal curve of 100mm overhang is shown in Figure 8.

Figure 8: 100mm cropped effective vibration signal

By clipping and calculating the zero-intersection using python code, the final frequency is estimated to be 33.51Hz. Finally, using formula 3, Young's modulus is 68.82 GPa.

When the overhang length of the steel rule is 120mm, the original vibration signal curve is shown in Figure 9.

Figure 9: 120mm original vibration signal

The adjusted vibration signal curve of the 100mm suspension is shown in Figure 10.

Figure 10: Figure 7: 120mm adjusted vibration signal

The cropped effective vibration signal curve of 100mm overhang is shown in Figure 11.

Figure 11: 120mm cropped effective vibration signal

By clipping and calculating the zero-intersection using python code, the final frequency is estimated to be 43.48Hz. Finally, using formula 3, Young's modulus is 240.30 GPa.

4. Discussion

In the second experiment, when the steel rod is overhung at 100 mm, the estimated frequency and Young's modulus are much lower than normal. The possible cause is that the force applied by the  hand is not consistent with the other times, which may be caused by too little force. For a longer overhang length (100mm), the vibration of the steel ruler may also be doped with some other vibrations, which are frequencies of other modes, so that the calculated Young's modulus is low. It is also possible that the clamping conditions are unstable, and the clamping point between the steel rule and the book may slip or loosen slightly, affecting the accurate measurement of the frequency. It is also possible that when the signal is clipped, there is a large noise interference in   the signal, or the improper selection of the clipping threshold, resulting in inaccurate zero crossing detection, making the frequency estimation wrong. Therefore, this set of experimental data will be invalid.

Taking the data of 80mm and 120mm overhang, the average Young's modulus is 257.305GPa and the standard deviation is 17.005GPa. This average of 257.31 GPa is close to the typical Young's modulus of steel (190-210 GPa), but slightly higher, possibly due to measurement errors or differences in the material properties of the steel ruler. Measurement errors may include the difficulty in accurately controlling the magnitude and direction of the force when applying it manually; The steel rule and the hardcover book clamping place are not completely fixed, there will be slight loosening; The method of estimating the frequency through the zero crossing may not be  very accurate, the signal will mutate as if by interference, and the error is still significant after slight  removal of the mutation in the horizontal axis of the signal. For material properties, the steel ruler may not be pure steel, or there may be manufacturing inhomogeneity, resulting in the actual Young's modulus not exactly consistent with the theoretical value.

However, improvements can include the use of standard weights instead of manual force to ensure the same force and direction for each excitation vibration; The use of professional clamps instead of hardcover books to ensure that the steel ruler is completely fixed at the clamp, reducing the change of boundary conditions; The sampling accuracy can also be improved to improve the resolution and accuracy of the frequency measurement. Thus, more accurate measurement of Young's modulus of steel rule material characteristics can be achieved.

5. Conclusion

The experiment successfully uses the low-cost microphone circuit and Python signal processing technology to estimate the Young's modulus of the steel ruler by measuring its natural vibration frequency. After excluding the abnormal  100mm overhang data, the average Young's  modulus based on the 80mm and 120mm overhang results is 257.31 GPa, close to the typical value of steel (190-210 GPa). Despite some errors, this method demonstrates the feasibility of material property estimation in resource-limited environments such as disaster relief. In the future, the measurement accuracy can be further improved through standardized force application, professional fixation, higher sampling rate and more accurate signal processing technology, and the scheme can also be used to estimate Young's modulus of other materials.

References

University of Bristol, CADE10002 Lab Guidelines, 2024.

University of Bristol, Dynamics Lab Circuit Step-by-Step Building Guide, 2024.

Davis, J.R. Metals Handbook Desk Edition. ASM, 1998.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图