代做DTS208TC Data Analytics and Visualisation Coursework 2代做留学生Python程序
 

Module code and Title

DTS208TC Data Analytics and Visualisation

School Title

School of AI and Advanced Computing

Assignment Title

Coursework 2

Submission Deadline

03/Apr/2025

Final Word Count

N/A

Note: Please upload the corresponding Python code screenshots for the codes section.

T1 Nationwide Visualisation of Air Quality (45 marks)

T1-1: Plot the trends of Max AQI for all states from 2000 to 2022.

Codes

 

Visualization results

 

T1-2: Create a choropleth map showing the distribution of Max AQI by state for year 2022.

Codes

 

Visualization results

 

T1-3: Create a visualization showing the distribution of air quality days (Good Days, Moderate Days, Unhealthy Days, Very Unhealthy Days and Hazardous Days) in California for the year 2000.

Codes

 

Visualization results

 

T1-4: Please use the below form. to describe the design of T1-1, T1-2 and T1-3.

 

T1-1

T1-2

T1-3

Mark

 

 

 

Channel (Do not just list channels. Please describe the design of them.)

 

 

 

Limitation

 

 

 

T2. Predictive Analysis for California (55 marks)

T2-1: Create 5 data visualisation results to show the relationships between California’s Median AQI and its influencing factors (Year (2000 - 2021), Pop_Est, Good Days, Moderate Days, Unhealthy Days). 

Codes

 

Visualization results

 

T2-2: Based on the visualisation results, describe the relationship between these influencing factors and the Median AQI. Using these relationships and the 2022 influencing factor data for California, predict the Median AQI for California in 2022 without relying on model training. Justify the reason of your prediction.

 

Year

Pop_Est

Good Days

Moderate Days

Unhealthy Days

Relationship

 

 

 

 

 

Prediction

 

Reason

 

T2-3: Train a regression model using California’s data from 2000 to 2021. The model should aim to learn the relationships between Median AQI (target variable) and its influencing factors (Year, Pop_Est, Good Days, Moderate Days, Unhealthy Days). Choose 2 evaluation metrics to evaluate your model and discuss the result.

Codes

 

Evaluation results

 

Discuss

 

T2-4: Predict California’s Median AQI for 2022 using the trained model.

Codes

 

Prediction

 

T2-5: Compare the results of the visual prediction from T2-2 and the model-based prediction from T2-4. Discuss the differences and explain which approach you find more reliable and why.

• Comparison and Discussion

Comparison and Discussion

 

 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图