代做CSMAD Applied Data Science with Python代做Python编程

Department of Computer Science

Summative Coursework Set FrontPage

Module Title

Applied Data Science with Python

Module Code

CSMAD

Type of Assignment

(e.g., technical report, set exercise, in-class test)

Set exercise 2 of 2

Individual or Group Assignment

Individual

Weighting of the Assignment

50%

Word count/page limit

Approximately 1,500 words, excluding code, code comments, captions and

tables.

Expected hrs spent for the assignment (set by lecturer)

20

Items to be submitted

A single .zip archive, containing:

1. All final project code.

2. One fully executed Jupyter

Notebook file (.ipynb), displaying code, figures, and explanations (as Markdown)

3. One HTML file (.html), exported from above Jupyter Notebook.

Work to be submitted on-line via Blackboard Learn by

Monday, 27 January 2025, 12:00 noon

Work will be marked and returned by

Friday, 14 February 2025

1. Assessment classifications

This coursework assesses your ability to:

•    acquire   and   be   able   to   apply  statistical,   programming,  and   machine   learning techniques in Python for data science tasks;

•    evaluate, select and use state-of-the-art Python tools and platforms for solving data science problems;

•    design, implement, and execute solutions in Python for data science problems; and

•    evaluate   data   science   solutions   in   Python,   including   their   outcomes,  efficacy, constraints, and uncertainty.

You will gain credit for:

•    preparing and submitting required files as requested;

•    successful implementation of the requested coding tasks;

•    writing efficient, functional code;

•    providing thoughtful, clear, well-structured written analysis.

Your assignment will be marked according to the marking schemes provided below. The schemes are designed so that the collectively weighted assignment  mark will correspond to the following qualitative  master’s  degree classification descriptions. The table below describes what is typically expected of the work to obtain a given mark.

Classification Range

Typically, the work should meet these requirements

Distinction (>=70%)

Outstanding/excellent  work with  correct codes and results. An outstanding work should demonstrate coding proficiency with high efficiency  and  based  on  advanced  techniques.  Written analyses demonstrate  exceptional   understanding  and application  of the related concepts and techniques, with focused attention to details of the  results.   The  work exhibits originality and  includes critical analysis.

Merit (60-69%)

Good work with mostly correct results: most work has been carried out  correctly.  Some tasks  have  not  been  carried  out  or  are  not completely correct.     Coding with average efficiency.     Written analyses show a strong  understanding of the subject, with clear application of sensibly chosen concepts and techniques.  The work includes some critical evaluation and broad generalization of the results.

Pass (50-59%)

Achievement of the minimum requirements. Some significant part of the assignment is missing and/or has  partially correct  results. Coding   lacks    efficiency.       Written   analyses    meet    the   basic requirements,    demonstrating     adequate     understanding     and applications of key concepts, but the work may lack depth, contain technical errors, omit specific discussion of the results, or include improperly selected techniques.

Fail (<50%)

Incomplete solutions to limited part of the assignment. Most tasks have not been carried out with sufficient accuracy.  Results may not be  correct  or  technically  sound.    Coding  is inefficient.    Written analyses do not meet the required standards, demonstrating insufficient understanding. Work ignores consideration of specific results and is missing key components.

2. Assignment description

Data Description

The data for this coursework are available in a single CSMAD_CW2_data.zip file on the CSMAD Blackboard space, under the Assessment heading, Coursework 2 of 2.  You MUST use this version of the datasets.  The archive is organized as shown:

CSMAD_CW2_data.zip

└── data/

├── traffic/

│ ├── DailyStandard_Report_1_19078_01_01_2021 … .csv

│ ├── ... intermediate files ...

│ ├── DailyStandard_Report_1_19124_01_01_2024 … .csv

│ └── TRIS+-+User+Guide+r3.pdf

└── weather/

├── 03761099999_2021.csv

├── 03761099999_2022.csv

├── 03761099999_2023.csv

├── 03761099999_2024.csv

├── CSV_HELP.pdf

└── isd-format-document.pdf

Vehicle Traffic Data: traffic/

The traffic directory contains eight CSV files. These Daily Standard Reports describe the flow of traffic past two Motorway Incident Detection and Automated Signalling (MIDAS) observing stations on the M4, south of Reading.  Most column headers are self-explanatory.  To clarify other column headers, those with cm units record the count of vehicles of a size (length) within the stated range, those with mph ranges are  missing, Avg mph is  the  recorded  average  speed  of  vehicles,  and Total Volume is the count of all vehicles during the preceding 15 minutes.

The TRIS+-+User+Guide+r3.pdf file describes datasets from which the CSV data is sourced.  While this is included largely for informational purposes, you will need to reference the definition of Day Type for some portions of this coursework.

Source:https://webtris.highwaysengland.co.uk/

Weather Data: weather/

The weather directory contains four CSV files.  These describe common weather observations at a location near those of the above MIDAS observing stations.  The definition of the data in these files is NOT made obvious by the column headers. Instead, elements of this coursework will require that you use the CSV_HELP.pdf and isd-format-document.pdf files to understand and decode the existing data representations.  Make special note that you will need to choose between FM-12 and FM-15 report types.

Source:

https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.n cdc:C00532/html

Coursework Task: Analysing and Predicting Traffic Flow Using Regression and Time Series Models

In this coursework, students will develop a data science project aimed at predicting traffic flow using historical traffic and weather data spanning multiple years with high- frequency  observations.    The  coursework  emphasizes  the  application  of  multiple regression  formats  and  time  series  models  to  forecast  traffic  patterns.    You  will process  encoded  weather  data,  select  appropriate  predictors,  and  handle  data preparation and analysis through custom Python modules.   This will enable you to critically interpret results and develop a deeper understanding of analytical tools and Python programming concepts.

Note : The models are NOT required to exhibit excellent performance, but they need to be sensibly constructed and evaluated.

Key Objectives:

1.   Decode  and  pre-process  (e.g.,  set  regular  time  intervals,  handle  missing

values, identify trends, etc.) the weather and traffic datasets provided.  You will likely not need all of the weather data.

2.   Briefly explore the data to demonstrate understanding of its contents (e.g., statistical reporting and a few visualisations, maximum 5).

3.   Select  relevant  predictors for modelling, justifying your choices based on data  exploration  and  domain   knowledge.     Hint:  this  will   likely  involve feature engineering (e.g., to represent cyclical characteristics).

4.   Apply  regression and time series models of multiple types and designs to predict the sum of the number of vehicles passing the two sites combined; these model types are limited to those described in the module.   Design sensible testing targets (e.g., a chosen time horizon, data splits).

5.   Thoroughly  evaluate  the   performance  of  the  models  with  appropriate metrics.  Note features of particular importance in prediction.

6.   Compare the  above  models to additional implementations that include a representation of the Day Type to explore the effect of its inclusion.

7.   Present findings with textual, tabular, and visual code outputs.

8.   Explain    and   justify   the   chosen    methodologies   and    results   through markdown annotations in aJupyter Notebook, ensuring you tell a coherent story about the process of your analysis.

Technical Code Requirements:

1.   The submitted notebook will have minimal amounts of code necessary to execute the analysis.

2.   Analysis  code  will  reside  in  self-designed  external modules or  package directory to promote exploration of code reusability and modularity.  Only the code necessary to operate the module code and display results will be shown in the notebook.

a.   In terms of code, an exemplary submission might import your coded module(s)  and  execute   individual  functions to   load,  clean,  and prepare    the data,    display    statistics     and    explanatory    data visualisations, engineer features, select  predictors,  specify  model parameters, train models, and display model performance results.

3.   Modules,   classes,   methods,   and   functions  will   include  complete   and explanatory docstrings.  The existence of these should be demonstrated at least once within the notebook via use of the help() function.

4.   Code  should   be  commented  to   enhance  code   readability  and  explain complex logic or important steps.

5.   Code  should  contain  at least 3  instances of formal error handling; many specific applications are possible and acceptable (e.g., try-except blocks for data loading or model fitting errors).

Written Requirements :

1.   Organise the notebook into clearly defined and logically ordered sections.

2.   Provide  any  necessary  instructions  for  setting  up  the  environment  and dependencies, possibly including a basic requirements file.

3.   Provide  a  description  of your external  module/package organisation  and how their elements relate to the larger analysis.

4.   Explain  where  and  why  formal  error  handling  has  been  incorporated  to enhance your code’s robustness.

5.   Before execution of code in a notebook cell, include a statement describing its  purpose  and  intent.    This  may  also  include  justifications  for  chosen methodologies, where applicable.

6.   After execution of code in a notebook cell, describe its outputs and discuss their implications for your analysis.

7.   Following any series of related actions (e.g., execution of multiple models), provide a critical comparison of their features, strengths, and weaknesses.

8.   Conclude the  notebook with  a  recap of the key insights gained from the analyses, highlighting the effectiveness of different modelling approaches, acknowledging   any   data   or    methodological   limitations,   and   suggest potential future improvements.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图