代写MATH70078 Fundamentals of Statistical Inference, 2024-25代写C/C++程序

MATH70078 Fundamentals of Statistical Inference, 2024-25

Coursework.

Deadline for submission 12 noon (midday) Friday 8 November, via Blackboard.

(1) Let Y1, . . . , Yn be independent, identically distributed, with common density f(y; θ) = θe−θy, y > 0.

Suppose the (non-informative, improper) prior for θ of the form. π(θ) ∝ 1/θ, θ > 0.

Find the form. of the Bayes estimator of µ = E(Yi) ≡ 1/θ with respect to this prior and the loss function

L(µ, a) = µ2/(µ − a) 2.                         [4]

What is the maximum likelihood estimator µb of µ?              [1]

Calculate the risk of the Bayes estimator and compare it with that of µb. Is µb admissible?                 [5]

[A random variable X with the inverse Gamma distribution has density of the form. f(x; α, β) = Γ(α)/βα(x/1) α+1e −β/x, x > 0.]

(2) Let Y1, . . . , Yp (p > 2) be independent random variables such that Yi ∼ N(θi , 1). Write Y = (Y1, . . . , Yp) T and θ = (θ1, . . . , θp) T . Let θ ≡ θ(Y) = (θ1(Y), . . . , θp(Y))T be an estimator of θ, and let g(Y) ≡ (g1(Y), . . . , gp(Y))T = θ − Y .

Let Di(Y) = ∂gi(Y)/∂Yi . Show that

is an unbiased estimator of the risk of θ, under squared error loss           [4]

Suppose the estimator θ is of the form. θ = bY , for b ∈ R. Find the value b ∗ of b that minimises the unbiased risk estimator Rb(Y). Compare the estimator b ∗Y with the James-Stein estimator.                [3]

The soft threshold estimator is defined by

where λ > 0 is a constant, to be specified. Show that for this estimator

             [2]

[Here, I(A) = 1 if A holds, = 0 otherwise.]

It has been suggested that a suitable choice of the value of λ is that which minimises R(Y). Explain why determining this value only requires examining the value of R(Y) at a finite number of values of λ.              [3]

Find the form. of the estimator θP that minimises the penalized sum of squares

with J(θ) = |{θi : θi ≠ 0}|, the number of non-zero elements of θ.

Calculate the risk of θP for the case p = 1. When is this estimator preferable to the unbiased estimator θ ≡ Y ? Quantify your answer for λ = 1, 2, 5.        [8]

[Total 30]





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图