代做Final project代写留学生R语言

Final project

Your final project in this course will be a collaborative that uses each element of the data science process to answer questions on a topic of your choosing. Your team will be responsible for finding and cleaning data; producing visualizations and exploratory analyses; producing concrete data-centric deliverables; and disseminating results. You are expect to organize your work and to collaborate using best practices.

Structure and due dates

Team

You will work closely with other classmates in a team of 4-5 on this project, and are free to form teams of your choosing.

If you can’t find a team, or wish to form. a team of a different size, please reach out to the instructor. In general, we do not anticipate that the grades for each group member will be different. We do, however, reserve the right to assign different grades to each group member based on peer assessments or public records of contribution (e.g. through commit histories).

Due dates

Date

Description

Deliverable

November 7 by 1:00 pm

Form. a team and submit a proposal

Written proposal document

November 10-14

Project review meeting

Zoom meeting – no “deliverable”

December 6 by 11:59 pm

Report

Written report giving detailed project description

December 6 by 11:59 pm

Webpage and screencast

Webpage overview of project, with short explanatory video (published online)

December 6 by 11:59 pm

Peer assessment

Brief assessment of your teammates contributions (as a short document)

December 11

“In class” discussion of projects

Enjoy hearing about projects! (Also get hex stickers )

Deliverables

Submissions

Other than peer assessments, each deliverable will appear online (as e.g. a GH repo or youtube video). Links should be submitted via Courseworks by one team member (not necessarily the same person for each deliverable).

Team registration and proposal

First, you will define your teams and propose a project. This proposal should be a half-page to a page in length and include:

· The group members (names and UNIs)

· The tentative project title

· The motivation for this project

· The intended final products

· The anticipated data sources

· The planned analyses / visualizations / coding challenges

· The planned timeline

There should be one proposal per group, written collaboratively using .Rmd (rendering to a GH document) in a dedicated GitHub repo. This is intended to describe a project that is in the planning stages. Only one team member should submit this proposal via Canvas.

Please also submit (only once per team) a list of your team’s UNIs using this form. (https://forms.gle/4JLUtmwDwdP1WiR28). Doing so will help us keep track of teams.

Project review meeting

Based on the topic of your proposal, you will work a member of the teaching team; this person will be your primary resource and will guide you through the rest of the project. In particular, you will schedule a project review meeting with your teaching team leader to discuss the proposal, anticipated stumbling blocks, and preliminary work. All team members are required to be present for the meeting. The project review meeting is intended to ensure all team members are in agreement about the project, that there is a clear timeline, and that there are contingency plans in case of major difficulties.

Report

The written report produced by your team is central to this project. This will detail how you completed your project, and should cover data collection and cleaning, exploratory analyses, alternative strategies, descriptions of approaches, and a discussion of results. We anticipate that your project will change somewhat over time; these changes and the reasons for them should be documented! You will write one report document per group, and be sure to include all group member names in the document.

Your report should include the following topics. Depending on your project type the amount of discussion you devote to each of them will vary:

·   Motivation: Provide an overview of the project goals and motivation.

·   Related work: Anything that inspired you, such as a paper, a web site, or something we discussed in class.

·   Initial questions: What questions are you trying to answer? How did these questions evolve over the course of the project? What new questions did you consider in the course of your analysis?

· Data: Source, scraping method, cleaning, etc.

· Exploratory analysis: Visualizations, summaries, and exploratory statistical analyses. Justify the steps you took, and show any major changes to your ideas.

·   Additional analysis: If you undertake formal statistical analyses, describe these in detail

·   Discussion: What were your findings? Are they what you expect? What insights into the data can you make?

As this will be your only chance to describe your project in detail, make sure that your report is a standalone document that fully describes your process and results. We also expect you to write high-quality code that is understandable to an outside reader. Coding collaboratively and actively reviewing code within the team will help with this!

Webpage and screencast

You will create a webpage for your project. This should gives an overview of the project scope, data, approaches, visualizations, and other results, in a way that it accessible to a broad audience. Include the full report as a page in the website, so that readers can find a detailed explanation of your work.

You will also create a two-minute narrated screencast illustrating your project (screencasts are videos of your computer screen with spoken audio explaining what is shown on the screen – see the RStudio webinar page (https://www.rstudio.com/resources/webinars/) for some examples). You may use slides, demonstrations, or any other content that is relevant to your project. Publish your screencast on youtube, vimeo, or another online platform, and embed the screencast in your website. The two-minute limit will be strictly enforced.

For both the website and the screencast, your audience is classmates who worked on other projects. It will be helpful to put yourself in their shoes, and ask what information you think will be most interesting. We suggest you emphasize motivation, questions, and   results over methods; after all, interested folks can view your complete project report on the same page.

G itHub repo

Your report and website should be written collaboratively using GitHub. A link to this repo should be included prominently on your website’s landing page.

Project submission

You will be asked to submit a link to your project website.

Peer assessment

It is important to provide positive feedback to people who worked hard for the good of the team and to also make suggestions to those you perceived not to be working as effectively on team tasks. We ask you to provide an honest assessment of the contributions of the members of your team, including yourself. The feedback you provide should reflect your judgment of each team member:

·   Preparation - were they prepared during team meetings?

·   Contribution - did they contribute productively to the team discussion and work?

·   Respect - did they encourage others to contribute their ideas, and provide feedback in a constructive way?

· Flexibility - were they flexible when disagreements occurred?

Rubric

Grading for the final project will roughly follow the rubric below:

· 60 points for general project quality and execution, including interest and motivation for the topic selected, level of difficulty and ambition in the project goals, clarity in the approach taken to address questions of interest, appropriateness of any exploratory and / or formal analysis, and attention to detail in the execution of project deliverables.

· 20 points for reproducibility, including clear description of where and how data were obtained, quality of code for data import, manipulation, and analysis, and structure of git repos for deliverables.

· 20 points for dissemination, focusing on project website, report, and screencast; in each, we will evaluate whether the deliverable had the appropriate level of detail, was clearly structured and easy to navigate, and was implemented in a polished way.

As noted above, we anticipate that team members will recieve the same grade in most instances, but we may assign different grades to each group member based on peer assessments or public records of contribution (e.g. through commit histories).

Examples

The examples below are drawn from previous submissions in the to give an idea of the range of possible projects.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图