代写BUSML4385 in Supply Chain Optimization and Simulation using anyLogistix代写Web开发

Exercises

in Supply Chain Optimization and Simulation using anyLogistix

Level 1 Basic

2. Introduction

Supply chain network design and operational planning decisions can have a drastic impact on the profitability and success of a company. Whether to have one warehouse or two, close a factory or rent a new one, or to choose one network path over another are all consequential decisions a supply chain (SC) manager must make. However, these decisions must be the result of more than experience or intuition, and, as a result, research in SC management (SCM) is geared towards providing the data, tools, and models necessary for supporting SC managers’ decisions. One of these decision-supporting tools is anyLogistix (ALX), a software which facilitates Greenfield Analysis (GFA), Network Optimization (NO), and Simulation (SIM).

ALX has become more and more popular with the provision of the free PLE version, and because it is an easy-to-use software, includes simulation and optimization, and covers all standard supply chain topics (center-of-gravity, efficient vs responsive SC design, SC design through network optimization, inventory control simulation with safety stock computations, sourcing (single vs. multiple) and shipment (LTL vs FTL) policy simulation). This case booklet has been developed to support a course in Supply Chain Management using ALX software and its sample case (Polarbear Bicycle) analysis. The following themes will be considered:

•   Facility Location Planning (COG, Trade-off Efficiency vs Responsiveness)

•    Supply Chain Design (Network optimization, CPLM)

•   Inventory Control Policy (simulation, safety stocks, ordering policies)

•    Sourcing Policy (simulation, single vs multiple sourcing)

•   Shipment Policy (LTL/FTL, aggregation rules)

This collection of exercises is designed as an application add-on to the main ALX Handbook which provides technical descriptions of how to build ALX models. The main ALX handbook is available at https://www.anylogistix.com/resources/books/alx-textbook.

The ALX case booklet and handbook addresses the application of quantitative analysis methods and software   to   decision-making   in   global  supply  chains  and  operations.   Understanding optimization and simulation methods in supply chain strategies is a core component to build strong decision-making skills. Completion of the exercises in this booklet will provide basic technical skills in the use of simulation and optimization software with the help of ALX software.

This case is designed to stimulate and enhance conceptual and analytical decision-making skills in actual operating situations. Students will be required to evaluate actual business situations and apply their relevant  skills, experience, and judgment to develop viable resolutions to business problems using a professional supply chain simulation software tool for decision-making support. The case isdrawn from anactualindustry examplewheremanagers faceddecisions in different facets of supply chain and operations management (SCOM). The case method requires you to prepare a decision based on careful evaluation of case facts and numbers to the extent possible. As with all business situations, there may be insufficient facts, ambiguous goals, and dynamic environments.

Upon completing the case, students should be able to do the following:

•   Develop critical thinking skills, be able to identify, generalize, prioritize, isolate, and reduce complexity in complex and ambiguous operational situations,

•   Understand how strategic considerations influence operational decisions,

•   Apply analysis and improvement tools learned in previous courses to actual business situations,

•    Strengthen qualitative and quantitative reasoning skills for operational decision-making. Specifically, this case seeks to strengthen the following skills:

Analytical Skills: Students will possess the analytical and critical thinking skills to evaluate issues faced in business and professional careers.

Technical Skills: Students will possess the necessary technological skills to analyze problems, develop solutions, and convey information using optimization and simulation software.

To develop these skills, the case will examine the Polarbear Bicycle case. Students will act as managers in the firm to determine the best course of action for building a new supply chain

(SC) from scratch. The goal of the case and ALX analysis is to develop a new SC for the

Polarbear Bicycle company. The new SC will need to be focused on optimization and

profitability to enhance the firm’s competitive edge in an increasingly global market where sales prices are driven down while costs remain stable.

Using the ALX data and software, students will conduct analyses to (1) determine an optimal location using Greenfield Analysis (GFA) for a new warehouse, given the location of their current customers and those customers relative demands, (2) compare alternative network designs using Network Optimization (NO), (3) perform. a Simulation (SIM) of different scenarios,

(4) validate the models using Validation, Comparison experiments, and (5) analyze SC behavior. under un- certainty using the Risk Analysis experiment.

The author thanks The AnyLogic Company for their invaluable feedback, comments and sce- nario updates to this exercise book. The author also wishes to thank Ms. Meghan Stewart for a thorough proof-reading. The author thanks students Meghan Stewart, Jannes Zuch, Chantal Reimann, Moritz Albrecht, Stephanie Paeschke, Julia Dyck, Lily Creed, Christin Kemper, Ragna  Maria  Berg  in  MA  Program  Global  Supply  Chain  and  Operations  Management  | GSCOM at Berlin School of Economics and Law for case-study samples used in this exercise book. Finally, the author thanks Mr. Nurlan Mammadzada, a former student in the GSCOM master program as well as Mr. Hiran Prathapage, a research associate at HWR Berlin for the updates of all exercises and educational materials.

3. Case study 1

3.1 Description of Case Study

We are considering a company called Polarbear Bicycle. Polarbear Bicycle has been newly founded as an e-commerce start-up selling bicycles. Polarbear’s portfolio includes four different types of bicycles: x-cross, urban, all terrain, and tour bicycles. Polarbear needs to find a good location for a new distribution center (DC). First, they estimate customer demand. Polarbear distributes their bicycles to four locations throughout Germany: Cologne, Bremen, Frankfurt am Main, and Stuttgart. Table 1 shows customer demand, which is equal to 245 bicycles per day.

Customer

Bicycle Type

Demand per day

Cologne

x-cross

2

Cologne

urban

50

Cologne

all terrain

15

Cologne

tour

10

Bremen

x-cross

7

Bremen

urban

30

Bremen

all terrain

20

Bremen

tour

20

Frankfurt am Main

x-cross

6

Frankfurt am Main

urban

5

Frankfurt am Main

all terrain

4

Frankfurt am Main

tour

5

Stuttgart

x-cross

15

Stuttgart

urban

15

Stuttgart

all terrain

1

Stuttgart

tour

40

Table 1. Customer demand

Polarbear Bicycle has hired a consulting firm to analyze supply and distribution network alter- natives and to develop a best-case scenario for Polarbear Bicycle. They are charged with con- ducting a GFA to determine the possible location of a new DC in Germany, as well as a network optimization to compare several options for network paths. The consulting firm was also asked to run a simulation to validate several KPIs and plan inventory, and to conduct a sensitivity analysis to verify all results as well.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图