代写COMP 0137 Machine Vision: Homework #1代写Python语言

COMP 0137 Machine Vision: Homework #1

Due 17th November 2025 at 4:00 pm on Moodle

Worth 10% ofyour overall grade

(Grading scheme: 50% is a basic pass, 70% is a low‘A,)

For this homework, we,ll revisit two practicals: Homographies and Particle Filters. Though some of this will feel repetitive, it should solidify what we learned in the practicals. There are multiple parts, so please read the instructions carefully. Everything you turn in must be YOUR OWN WORK, except obviously the helper-code and data given to you on Moodle. No use ofAI-assisted coding allowed. See below for more details. As always, list names/references for anything you,re submitting that is not your own work. Late Policy: We follow the official UCL late-policy, and this gets applied *after* your coursework is marked on Moodle, based on the Moodle timestamp. The instructor/TA,s have no control over this — at all:

https://www.ucl.ac.uk/academic-manual/chapters/chapter-4-assessment-framework-taught-programme s/section-3-module-assessment

What to turn in (all inside one YourFileName.zip file):

- Four jupyter notebooks containing your code and explanations for the Homographies lab. You should  complete all the TODO,s. For every figure or plot that is generated by the code (for videos, a few frames are enough), put a copy in your notebook, and write 1-3 sentences (maximum) explaining what the figure shows or pros/cons of what is happening.

- Two jupyter notebooks for the Particle Filter lab, with your explanations — as above.

- Two jupyter notebooks for the additional tasks in parts G and H, for which we created templates for you to fill in your code. Include explanations — as above.

- Limit file-uploads to 250Mb, maximum enforced by Moodle. Hopefully, that will make it easier for you to submit all the notebooks with the relevant outputs saved (see ** below). If the zip丨d file still doesn丨t fit for you, then save the rendered output for the tracking of Upper right corner "ur", and not the other three.

- To reiterate:just annotated Python code is not a valid coursework submission!

- One folder containing all your code. Do not use subfolders.

- Please write your YourFileName in the first line of EACH notebook. Please choose a YourFileName  string made of a color + an animal + 4-digit number, e.g. "OliveOrangutan999". And check that your zip file isn,t corrupted.

- Please do not write your explanations as comments, but as markdowns.

- Please save your notebooks with outputs. For repetitive tasks, show the output for each task in your notebook. Make sure you do not accidentally overwrite outputs.

- Keep in mind: Clearly structured code and explanations are easier to read and make your graders happy! (Read the Special Notes below; they contain advice/tips)

Homographies Part I (25%)

A)         04_Practical_Homographies\practical1A.ipynb

Besides completing the TO DO,s, make sure to describe and illustrate the first two TO DO,s in the list of three: scale ambiguity and exact mapping of pairs of four points.

B)         04_Practical_Homographies\practical1B.ipynb

Complete TO DOs and document in your notebook. You may use PracticalDataSm.mat instead of PracticalData.mat to go faster.

Homographies Part II (25%)

C)         04_Practical_Homographies\practical2A.ipynb

Complete TO DOs and document in your notebook.

D)         04_Practical_Homographies\practical2B.ipynb

Complete TO DOs and document in your notebook.

Particle Filter, also known as Condensation (25%)

(Special Note: Be aware that there are some small differences between the code given in the lab practical #5, and the code used in G) below.)

E)         05_PracticalCondensation\labA.ipynb

Complete TO DOs and document in your notebook.

F)         05_PracticalCondensation\labB.ipynb

Complete TO DOs and document in your notebook. Special Note: You do NOT need to document the three TO DOs from the bottom of the intro (i.e. varying # of particles, modeling velocity in w, and visualizing the top-scoring particles). Though feel free to experiment with these.

Combining Tracking and Homographies (25%)

G)         HW1\HW1_CornerTrack.ipynb

Complete TO DOs and document in your notebook. Special Note: This task is mainly a repeat ofF), so you can apply what you did for the TO DOs in 05_PracticalCondensation\labB.ipynb, but note the

differences.

-     This function will be performed four times in the next part. But for now, you can run it by passing in ‘ll ’ as the lower-left corner argument.

-     Also, the image sequence is now converted to grayscale when computing the likelihood.

-     Some other tips & advice have been provided as comments.

H)         HW1\HW1_TrackingAndHomographies.ipynb

Complete TO DOs and document in your notebook. Special Note: This task is mostly a repeat of D), so you can apply what you did for the TO DOs in 04_Practical_Homographies\practical2B.ipynb, but note the differences.

-     Most importantly, consider this simplistic example, and mention at least two actions or changes we could make to improve the results (excluding actions from the Not-for-Credit Extensions).

-     Other tips and advice have been provided as comments.

** 250MB is the upload limit for your entire CW2 submission .zip file. Here are some notes to help get under that threshold, particularly in parts G and H. Note that getting below the TurnItIn limit of 100MB is not required.

1.   Make sure you aren't unnecessarily printing any large matrices in any cell.

2.   When you finalize your code, clear the output of all cells, and then run for final output before you save the notebook.

3.   For ‘Try varying the number of particles: 2000, 500, 100,...," you don't need to save a run for each value (keep the original run in the notebook though). You do need to tell us what you've observed and why.

4.   For part G, you only need to show the results for 'ur' (upper-right) in the notebook if you're

hurting for space. The marker will decide if they need to run your code to see results for the other corners.

5.   For part H, you don't need to show us the intermediate corner output on the sequence of images - that's already been covered in part G. Instead, what we want to see is the final output sequence   specific to this notebook, i.e. the cube mapped onto the marker through time.

6.   If you've done all this and are still having trouble, then please change the size of the figures in parts G and H by modifying the figure size line in the top cells of notebooks G and H from

'pylab.rcParams['figure.figsize'] = (12.0, 10.0)' to 'pylab.rcParams['figure.figsize'] = (6.0, 5.0)'. This should cut down each figure's size by half in each dimension.

7.   Also a note about YourFileName: it's not critical what you name your .zip file - but it would help if you follow the instructions to get a unique string. By design, staff don't have access to names  and don't know the mapping between submitted files and student names.

Not-for-Credit Extensions

-     Reduce the search space where particles can land by using an edge-detector.

-     Choose (or film!) a different video and/or 3D mesh, and augment the video as we did here.

-     Each particle filter’s state space w here was just the 2D image location of an interest point. Each  interest point was tracked independently. Consider making a particle filter whose w represents the state of an affine transformation of the whole pattern (black square on white paper). This will require modifying how new measurements are incorporated.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图