代做Quantitative Economics - ECON 500 Fall 2024 MIDTERM EXAM I代做Statistics统计

Quantitative Economics - ECON 500

Fall 2024

MIDTERM EXAM I

Instructions: The exam has two parts. Part A is in the form. of a multiple choice test, there is no partial credit in this section. Part B has questions that ask you to show your work, you can get partial credit in this section. You are allowed to pick the part that you like more. Your score will be equal to the highest of the two scores. You can try to do both parts, but there is no need to.

Part A

Problem #1

Let A denote the set of the algebraic numbers and T denote the set of transcendental numbers. Which of the following sets is finite?

a) (A ∪ T) ∩ Q

b) (R\T) ∩ T

c) Q∩A

d) T ∪ Q

Problem #2

Consider the following sets: A = {z  ∈ C|z3  + 1 = 0} and B  = 2A . How many elements does B have?

a) 8

b) 4

c) 2

d) ∞

Problem #3

Let f(x) = 1 − x. What is f (2n+1)(x) = f°f°...°f(x)

a) x

b) 1 − x

c) (1 − x) n

d) None of the above

Problem #4

Let f(x) = 1 − x for x ∈ R. What is the inverse of function of f, i.e., f-1 ?

a) It does not exist

b) 1 − x

c) 1-x/1

d) None of the above

Problem #5

Which of the following sequences converges?

a) an = e-sin(n2 π)

b) an = 1 + + + ... +

c) an = (1)ne-n

d) an = (−1)nnsin(n/1)

Problem #6

Consider the following recursive structure Pt+1 = 20 − P. Imagine that P = λPt+1+(1−λ)Pt , where λ ∈ [0, 1]. For which values of λ convergence occurs regardless of the starting point?

a) Never

b) Always

c) for λ > 4/1

d) only for λ = 1

Problem #7

Consider the following sequences an  = nsin( ), and bn  = ), where b satisfies 2 − b = eb. What is the limit of cn  =  + bn?

a) It does not exist

b) 1

c) 2

d) ln(2)

Problem #8

Imagine that we have two vectors v = [cos2 (α), a, b,1] and w = [1, −b, a, sin2 (α)]. What is the angle between the two vectors?

a) 0

b) α

c) 2/π

d) None of the above

Problem #9

Consider the following sets B1  = {x|p ◦ x ≤ 48} and B2  = {x|q ◦ x ≤ 48}, where p =  [1, 2] and q = [2, 1]. Which of the following sets is convex?

a) B1 ∪ B2

b) B1 ∩ B2

c) The boundary of B1 B2

d) None of the above

Problem #10

Consider the following preferences

Assume that xi   ∈  {0, 1, 2, ..., 9} and yi   ∈  {0, 1, 2, ..., 9} . Which of the following utility functions represents the above preferences?

a) U(x, y) = x + y + z

b) U(x, y) = 100x + 10y + z

c) Such a representation does not exist

d) None of the above

Problem #11

Let Abe an n × n symmetric matrix and x be an n × 1 vector. What are the dimensions of xTAx − (xTAx)T?

a) Such an object does not exist

b) n × n

c) 1 × 1

d) 0

Problem #12

Consider the following matrix

where d is the determinant of C = (cij) where cij  = ei-j for i,j ∈ {1, 2} . Let bT  = [1, 0, −1]. System Ax = b

a) has a unique solution

b) has no solutions

c) has infinitely many solutions

d) has only a trivial solution, i.e., only x = 0 solves the system

Problem #13

Let A be a matrix whose determinant is equal to a 0. Let C  =  AAT  −  (AAT)T . What is the determinant of C-1 ?

a) a2 a-2

b) 1

c) 0

d) None of the above

Problem #14

Consider the following matrix

Its determinant of A2 is equal to

a) 0

b) 8

c) 64

d) None of the above

Problem #15

The inverse of C = AA-1 − (AA-1 )-1

a) does not exist

b) is the same as C

c) is equal to I

d) None of the above

Problem #16

Consider the following matrix

Its eigenvalues are given with

a) λ1 = 2 and λ2  = 4

b) λ1 = −2 and λ2 = 4

c) λ1 = 2 and λ2  = −4

d) None of the above

Problem #17

Imagine that λi  ’s are non zero distinct eigenvalues of a given matrix, A, and vi’s are the corre- sponding eigenvectors.  Let P be the matrix of eigenvectors and D be the diagonal matrix with eigenvalues on the main diagonal. What is the determinant of Ck , where C = AP − PD?

a) 0

b) λ1λ2...λk

c) λ1(k)λ2(k) ...λk(n)

d) None of the above

Problem #18

Consider the following system

Do you expect the system to converge to the steady state?

a) Yes

b) No

c) Only when |a| < 1

d) None of the above

Problem #19

Consider the following matrix

Let B = (PT P)N . We can be sure that the eigenvalues of B are

a) less the 1 in absolute value

b) both equal to 1

c) approach ∞ and -∞ as N becomes large

d) None of the above

Problem #20

Imagine that a given symmetric matrix A has distinct eigenvalues and has an eigenvector given with v1(T)  = [1, 2]. Which of the following could be the other eigenvector of A?

a) v2(T)  = [2, 2]

b) v2(T) = [-2, 1]

c) v2(T)  = [-2, 2]

d) v2(T)  = [2, 1]

Part B

1. The calibration of a macroeconomic model suggest the following recursive rule of motion for expected inflation:

πt(e) = 0.1 + 0.8πt-1 + ϵt

Further, assume that πt = πt(e), π0 is given, and ϵt  = (-1)t × 0.01

(a) Find an expression for πt as a function of π0 and t.

(b) Verify your formula is correct using a proof by induction.

(c) Do you expect a sequence as defined in πt(e) – or the one you wrote for πt, if it is easier to analyze for you – would converge to a unique limit? Briefly explain why.

2. Prove the following:

(a) The set of complex numbers: C = {x = a + bi : i = √−1, and a, b ∈ R} is convex.

(b) The set L = {(x, y) : x ∈ R ∧ y ∈ Z}, where Z are the integer numbers, is not convex.

3. Consider a n × n matrix A. The elements of this matrix have the following property: a2j  = αa1j , ∀j Λ α ∈ R. Show that det(A) = 0.

4. Consider the following system of equations that describes a simple national-income model:

(a) Express the system in matrix notation: AX = B. Where

(b) Find the inverse of matrix A.

(c) What is the solution of the system if C0 = I0 = G0  = 1 and c = 0.5?

5. Consider the following matrix:

(a) Compute the eigenvalues of D.

(b) State the associated eigenvectors.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图