代做EC5606 Project 2024-25代做留学生R程序

Module: EC5606

Academic year: 2024-25

Assessment Type: Project

Submission Deadline: 9th August 2025, 12 noon UKtime, to be submitted via WISEflow

Economic Growth Regression Analysis

In this project assignment, students are required to conduct an empirical analysis of economic growth using regression techniques for the assigned country.

Submission Requirements

Students must submit the following files via WISEflow before the deadline, 9th of August, at

12:00 noon:

1.   Upload the report in pdf format for tasks in Part 2 and 3 of this brief using upload button right under “1. Paper” in WISEflow, see the red highlights below. The report should have (1) a maximum of twelve A4 pages, (2) the font Times New Roman size 12, (3) 2.54cm (1 inch) top, bottom left and right margins, (4) 1.5 line spacing.

2.   Upload the data file required in Part 1 and the software file used to complete the tasks in Part 2 and 3 using the upload button under Appendix Material in “1. Paper” in WISEflow, see the purple highlight below.

Project Brief

Part 1: Data Collection and Software Analysis (25%)

1.   Each student is allocated a different country to complete the empirical analysis for the project. Students can find the assigned country in the file “Country Allocation.xlsx” under Assessment in Brightspace.

For your assigned country, collect the following variables over the period 1961-2020 from the World Development Indicators website:

https://databank.worldbank.org/source/world-development-indicators

1)   “GDP per capita growth (annual %)” (henceforth: GDPgr)

2)    “GDP per capita (constant 2015 US$)” (henceforth: GDPpc)

3)    “Gross fixed capital formation (% of GDP)” (henceforth: GFC)

4)    “Inflation, consumer prices (annual %)” (henceforth: INFL)

5)    “Population growth (annual %)” (henceforth: POPgr)

6)    “General government final consumption expenditure (% of GDP) ” (henceforth: GOV)

7)    “Imports of goods and services (% of GDP)” (henceforth: IMP)

8)    “Exports of goods and services (% of GDP)” (henceforth: EXP)

Download the data as an Excel file with a .xlsx extension. Convert the data so that each variable should be a column vector, with the first-row entry being the variable name. The first column should be the observation number. The submitted excel data file counts to 10% of the final mark.

2.   Import the dataset into R using RStudio or into Eviews.

1)  Create a variable “Trade openness” (henceforth: OPEN) as OPEN=IMP+EXP.

2)  Create a variable “Initial GDP per capita” (henceforth: INIT) as INIT=ln(GDPpc), where “ln” denotes the natural logarithm.

3)  If there are any missing values, replace them with the nearest available observation after them. You may need to do this step several times consecutively.

Part 2 and 3 in this brief contain tasks that you need to perform in R or Eviews. The software code/analysis for all required tasks in Part 2 and 3 must be saved, reported/submitted as follows. IfRStudio is used, (1) report the used R codes in the Appendix of the project report by simply presenting all used commands with explanation comments for each line, if necessary; (2) submit a R code file (*.r) that replicates all reported results in the project report. If Eviews is used,    submit    an    Eviews    workfile    (*.wf1)     file    containing    all    adopted    objects (variables/regressions/tables/graphs)  corresponding  to  the  reported  results  in  your  project report. Please name the objects appropriately so that they can be found easily. The submitted software file (*.r or *.wf1 file) counts to 15% of the mark.

Part 2: Basic Growth Regression Analysis (35%)

3.   [10%] Preliminary Analysis:

1)    Create a graph that includes the time-series plots of all variables. Discuss the graph briefly. (5%)

2)    Create a table of summary statistics for the variables including the mean, standard deviation, minimum and maximum. Discuss your observations briefly. (5%)

Carefully report the results into a table using professional standards. Copying and pasting outputs directly from the software results in zero marks for this task. This principle follows for all task about tables.

4.    [15%] Estimate six growth regressions with GDPgr (economic growth per capita) as the dependent variable and the following independent variables in each regression:

Regression 1: GFC

Regression 2: GFC, POPgr

Regression 3: GFC, POPgr, INFL

Regression 4: GFC, POPgr, INFL, GOV

Regression 5: GFC, POPgr, INFL, GOV, OPEN

Regression 6: first lag ofINIT, GFC, POPgr, INFL, GOV, OPEN

1)    Typeset the above regressions in Microsoft Word using the equation editor carefully. Explain the variables in the equation briefly. (5%)

2)   Report the OLS estimation results for the above regression in a table using professional  standards  carefully.  The  table  should  contain  the  estimated coefficients with the statistical significance indicated by stars,  R2 , the adjusted R2 , and the F-statistic with the statistical significance indicated by stars. (10%)

Regressions must be reported side by side and statistical significance should be denoted  using  significance  stars  (*  next  to  coefficients  with  the   10% significance level, ** next to coefficients with the 5% significance level, *** next to coefficients with the  1% significance level, for two-sided t-tests of the null hypothesis that the coefficient is equal to zero). Note: use these principles in all tasks for reporting regression results below. Pasted software output will not be marked.

5.   [10%] Considering results from Regression 6:

1)    Interpret the estimated coefficients. Are the signs what you expected? Explain. (5%)

2)   Discuss the statistical significance of your estimates in the context of the economic growth. (5%)


Part 3: Extensions and Robustness (40%)

6.   [10%] Some countries’ economic growth may be affected by the Global Financial Crisis of 2007-2009. To investigate the potential impact of this event on your assigned country, amend Regression 5 from Part 2 accordingly using dummy variables. Report the regression results in a table with the same requirements in Task 4.2) and discuss the results briefly.

7.   [10%] The estimation results may be affected by autocorrelations in the residuals.

1)    Test for autocorrelation in the residuals of Regressions 5 and 6. Comment on the results. (5%)

2)   Alter Regressions 5 and 6 to deal with autocorrelation and report the results in a table. Comment on the differences between the new results and the original. (5%)

8.   [10%] Consider the possibility of nonlinearity, in the form of quadratic terms, in one or more of the variables in Regression 5. Amend Regression 5 accordingly and report the estimation  results  of that  regression  in  a  table.  Interpret  the  results.  Are  the  results reasonable?

9.   [10%] Growth regressions are frequently plagued by “simultaneity” which is a form of endogeneity. Simultaneity means that regressors are correlated with the errors at the same period, causing endogeneity.  For example, consider a sudden hike in the price of oil in a year. On the one hand, this is a shock in the error term, which affects the dependent variable economic growth, possibly reducing it. On the other hand, government spending decisions in the same year may also be affected by the price hike. Thus, the price hike can be correlated with the regressor. In this case, the error term is correlated to the regressor in the same period, which is the definition of endogeneity.

Use the time structure of the data to estimate a model based on Regression 6 that is not suffering from endogeneity. Comment on the differences between the results from this model and those from the original one of Task 4.

Key References

1.   Mankiw, N. G., Romer, D., & Weil, D. N. (1992). A Contribution to the Empirics of Economic Growth. Quarterly Journal of Economics, 107(2), 407-437.

2.   Barro, R. J. (1991). Economic Growth in a Cross  Section of Countries. Quarterly Journal of Economics, 106(2), 407-443.

3.   Levine, R., & Renelt, D. (1992). A  Sensitivity Analysis of Cross-Country Growth Regressions. American Economic Review, 82(4), 942-963.

4.   Acemoglu,  D.,  Johnson,  S.,  &  Robinson,  J.  A.  (2001).  The  Colonial  Origins  of Comparative Development: An Empirical Investigation. American Economic Review, 91(5), 1369-1401.

5.   Islam, N. (1995). Growth Empirics: A Panel Data Approach. Quarterly Journal of Economics, 110(4), 1127-1170.

6.   Sala-i-Martin, X. (1997). I Just Ran Two Million Regressions. American Economic Review, 87(2), 178-183.

Advice

•     Start data collection early because preparing data can be time-consuming.

•    Work with the R/Eviews software early as it takes time to learn. Do not stay behind.

•    There is a plethora of sites and videos on how to do things on.

Frequently Asked Questions:

Question: Can I add some results in the appendix, but comment on them on the main text?

Answer: No.

Question: Can go above the12-page limit?

Answer: No.

Question: I did what the questions requested and unfortunately the econometric results are bad, e.g., al the signs are wrong and the variables not statistically significant. Will I fail the project?

Answer: No. It is the quality of the econometric analysis to be marked, and not the research outcome per se. Use econometric theory to justify your decisions. The results sometimes will be good sometimes bad.

Question: I know you told us that we cannot exceed the  12-page limit, but can I add just one more extra page? Or reduce the size of the font? (or anything similar?)

Answer: No.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图