代写CHEM0019: PHYSICAL CHEMISTRY Quantum Mechanics Part2代写数据结构语言

4. Beyond exact solutions

Unfortunately, exact solutions of the Schrödinger equation are not possible for systems containing more than one electron.

4.1 The Hamiltonian for the helium atom

Earlier we saw that the full Hamiltonian for the H atom, expressed in spherical polar coordinates, is

This may be written for a hydrogenic atom with nuclear charge Z as:

How must this be adapted for the He atom? Consider the

following schematic diagram of the He atom:

The Hamiltonian for this system is:

where is the Laplacian for each electron i.

represents the kinetic energy of the electrons.

is the nucleus-electron attraction and

is the Coulomb repulsion between the two electrons.

In order to proceed we make the assumption that the repulsion between the two electrons can be mathematically ignored and somehow absorbed into an effective potential (i.e. we ignore the term).

We are thus assuming that the electrons move independently of one another. We can therefore assign each electron its own hydrogenic wavefunction Ψ1s (1)  and Ψ 1s (2) and the wavefunction for He can be written:

Ψ (1,2) =Ψ1s (1)Ψ1s (2)

This is called the one-electron or orbital approximation.

4.2 Electron spin and the Pauli exclusion principle

An electron has an intrinsic property which could be visualised as it spinning on its own axis. In our discussion of the particle on a ring, we saw that the z component of the orbital angular momentum is restricted to be Lz ml

By analogy, the component of the spin angular momentum in the z direction is confined to be sz = ±ms.

The spin quantum number ms can take one of only two values: ±1/2; we usually call these spin-up and spin-down or α and β .

The Pauli exclusion principle may be stated:

No two electrons in an atom may have the same set of the four quantum numbers n, l, ml and ms.

There is, however, a more fundamental form. of this principle. Consider the effect on Ψ(1, 2) of interchanging the two electrons, i.e.: Ψ(1,2) →Ψ (2,1) . Electrons are indistinguishable and hence this process cannot affect the   physical properties of the system. The probability distribution Ψ *Ψ must remain unchanged. For this to be true:  either Ψ(1,2) =Ψ (2,1) or Ψ(1,2) = -Ψ(2,1)

It turns out that the second condition is the correct restriction for electrons, and the more fundamental form of the Pauli exclusion principle is: the total wavefunction of a system must change sign when any two electrons are interchanged.  We say that the total wavefunction must be antisymmetric.

4.3 The ground state of the helium atom

Let us write α for a spin-up electron and β for a spin-down electron. Then the spin possibilities for the two electrons 1 and 2 in the He atom are:

α(1)α(2)       β(1)β(2)          α(1)β(2)         α(2)β(1)

The first two cases (i.e. α(1)α(2) and β(1)β(2)) are OK, but there is a problem with  α(1)β(2) and α(2)β(1) .  Electrons are indistinguishable, so we cannot say for sure that electron 1 has α spin and electron 2 has β spin, or vice versa. When electrons have opposite spins, there must always be equal probabilities of α(1)β(2) and

α(2)β(1)which we can ensure by taking linear combinations of these spin arrangements:

α(1)β(2)+α(2)β(1) and α(1)β(2)-α(2)β(1) .

We saw earlier that the wavefunction of the He atom could be written Ψ (1, 2) =Ψ1s (1)Ψ1s (2) . We now combine this spatial wavefunction with the spin wavefunctions:

Ψ (1, 2) =Ψ1s(1)Ψ1s(2)α(1)α(2)

Ψ (1, 2) =Ψ1s(1)Ψ1s(2)β(1)β(2)

Ψ (1, 2) =Ψ1s(1)Ψ1s(2) (α(1)β(2) + α(2)β(1))

Ψ (1, 2) =Ψ1s(1)Ψ1s(2) (α(1)β(2) -α(2)β(1))

Which of these satisfies the Pauli exclusion principle? The spatial wavefunction is symmetric with respect to the interchange of the two electrons, and hence the spin wavefunction must be antisymmetric. Only the fourth spin  function is antisymmetric, and hence the ground state wavefunction of He is:

when we include normalisation.

If we have two electrons in the 1s orbital of He, their n, l and ml values are all the same: 1, 0, 0. Thus ms must be different for the two electrons, as is the case for Ψ(1, 2) .

Ψ (1, 2)may also be written in determinantal form.

This is known as a Slater determinant. Each term in the determinant has a hydrogenic spatial orbital multiplied by a spin function, and is known as a spin-orbital.

4.4 Excited states of the helium atom

The ground state of He has two electrons in the 1s orbital, i.e. the electronic configuration 1s2. Excited states of He can be generated by promoting an electron from the 1s orbital to the 2s to yield the configuration 1s12s1. What states does this configuration give rise to?

We saw earlier that the spin wavefunctions α(1)β(2) and α(2)β(1)are not valid, due to the indistinguishability of electron 1 and electron 2. The same argument applies to the excited spatial wavefunction:

Ψspatial (1s, 2s ) =Ψ1s (1)Ψ2s (2)

Satisfactory spatial wavefunctions (including normalisation) may be obtained through linear combinations:

The first of these is symmetric with respect to the interchange of electron 1 and electron 2, and hence must be combined with the antisymmetric  spin wavefunction to satisfy the Pauli principle:

This state is a singlet state (there is only one contributing wavefunction).

The second spatial wavefunction is antisymmetric, and hence can be combined with any of the three symmetric spin wavefunctions to satisfy the Pauli principle:

This state is a triplet state (there are three contributing wavefunctions).

The Moodle document “The first excited state of the Helium atom, and the energetic effect of electron exchange” shows that the energy of the singlet state is E singlet   = E1s + E2s + J + K and the triplet state is E triplet = E1s + E2s + J - K .

Hence there is a difference in energy between the singlet and triplet states of 2K, where the exchange integral Note how this differs from the Coulomb intergral

The exchange integral K > 0, and hence the triplet state is the more stable (c.f. Hund’s rule of maximum multiplicity).




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图